|
|
A022331
|
|
Index of 2^n within sequence of numbers of form 2^i*3^j (A003586).
|
|
7
|
|
|
1, 2, 4, 6, 9, 13, 17, 22, 28, 34, 41, 48, 56, 65, 74, 84, 95, 106, 118, 130, 143, 157, 171, 186, 202, 218, 235, 253, 271, 290, 309, 329, 350, 371, 393, 416, 439, 463, 487, 512, 538, 564, 591, 619, 647, 676, 706, 736, 767, 798, 830, 863, 896, 930, 965, 1000, 1036, 1072
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Zak Seidov, Table of n, a(n) for n = 0..1000
N. Carey, Lambda Words: A Class of Rich Words Defined Over an Infinite Alphabet, arXiv preprint arXiv:1303.0888 [math.CO], 2013; Lambda Words: A Class of Rich Words Defined Over an Infinite Alphabet, J. Int. Seq. 16 (2013) #13.3.4.
|
|
FORMULA
|
a(n) = A071521(A000079(n)); A003586(a(n)) = A000079(n). - Reinhard Zumkeller, May 09 2006
|
|
MATHEMATICA
|
c[0] = 1; c[n_] := 1 + Sum[Ceiling[j*Log[3, 2]], {j, n}]; Table[c[i], {i, 0, 60}] (* Norman Carey, Jun 13 2012 *)
|
|
PROG
|
(PARI) a(n)=my(t=1); 1+n+sum(k=1, n, logint(t*=2, 3)) \\ Ruud H.G. van Tol, Nov 25 2022
|
|
CROSSREFS
|
Cf. A000079, A003586, A071521, A020915 (first differences).
Cf. A022330 (index of 3^n within A003586).
Sequence in context: A022792 A025697 A255977 * A087483 A154255 A232739
Adjacent sequences: A022328 A022329 A022330 * A022332 A022333 A022334
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|