login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106800 Triangle of Stirling numbers of 2nd kind, S(n, n-k), n >= 0, 0 <= k <= n. 5
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 7, 1, 0, 1, 10, 25, 15, 1, 0, 1, 15, 65, 90, 31, 1, 0, 1, 21, 140, 350, 301, 63, 1, 0, 1, 28, 266, 1050, 1701, 966, 127, 1, 0, 1, 36, 462, 2646, 6951, 7770, 3025, 255, 1, 0, 1, 45, 750, 5880, 22827, 42525, 34105, 9330, 511, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, May 19 2005
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
LINKS
A. Aboud, J.-P. Bultel, A. Chouria, J.-G. Luque, O. Mallet, Bell polynomials in combinatorial Hopf algebras, arXiv preprint arXiv:1402.2960 [math.CO], 2014.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
Eric Weisstein's World of Mathematics, Bell Polynomial
FORMULA
A(x;t) = exp(t*(exp(x)-1)) = Sum_{n>=0} P_n(t) * x^n/n!, where P_n(t) = Sum_{k=0..n} T(n,k)*t^(n-k). - Gheorghe Coserea, Jan 30 2017
Also, P_n(t) * exp(t) = (t * d/dt)^n exp(t). - Michael Somos, Aug 16 2017
T(n, k) = Sum_{j=0..k} E2(k, j)*binomial(n + k - j, 2*k), where E2(k, j) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 21 2021
EXAMPLE
From Gheorghe Coserea, Jan 30: (Start)
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[0] 1;
[1] 1, 0;
[2] 1, 1, 0;
[3] 1, 3, 1, 0;
[4] 1, 6, 7, 1, 0;
[5] 1, 10, 25, 15, 1, 0;
[6] 1, 15, 65, 90, 31, 1, 0;
[7] 1, 21, 140, 350, 301, 63, 1, 0;
[8] 1, 28, 266, 1050, 1701, 966, 127, 1, 0;
[9] 1, 36, 462, 2646, 6951, 7770, 3025, 255, 1, 0;
...
(End)
MAPLE
seq(seq(Stirling2(n, n-k), k=0..n), n=0..8); # Peter Luschny, Feb 21 2021
MATHEMATICA
Table[ StirlingS2[n, m], {n, 0, 10}, {m, n, 0, -1}]//Flatten (* Robert G. Wilson v, Jan 30 2017 *)
PROG
(PARI)
N=11; x='x+O('x^N); t='t; concat(apply(p->Vec(p), Vec(serlaplace(exp(t*(exp(x)-1)))))) \\ Gheorghe Coserea, Jan 30 2017
{T(n, k) = my(A, B); if( n<0 || k>n, 0, A = B = exp(x + x * O(x^n)); for(i=1, n, A = x * A'); polcoeff(A / B, n-k))}; /* Michael Somos, Aug 16 2017 */
(Sage) flatten([[stirling_number2(n, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 11 2021
CROSSREFS
See A008277 and A048993, which are the main entries for this triangle of numbers.
The Stirling1 counterpart is A054654.
Row sum: A000110.
Column 0: A000012.
Column 1: A000217.
Main Diagonal: A000007.
1st minor diagonal: A000012.
2nd minor diagonal: A000225.
3rd minor diagonal: A000392.
Sequence in context: A144645 A151510 A151512 * A308484 A227320 A318507
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 19:02 EDT 2024. Contains 371798 sequences. (Running on oeis4.)