login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308484 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. log(1 + Sum_{j>=1} j^k * x^j/j!). 1
1, 1, 0, 1, 1, 0, 1, 3, -1, 0, 1, 7, -1, -2, 0, 1, 15, 5, -26, 9, 0, 1, 31, 35, -146, 29, 6, 0, 1, 63, 149, -650, -351, 756, -155, 0, 1, 127, 539, -2642, -5251, 9936, -1793, 232, 0, 1, 255, 1805, -10346, -46071, 83376, 51421, -45744, 3969, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

LINKS

Seiichi Manyama, Antidiagonals n = 1..140, flattened

FORMULA

A(n,k) = n^k - Sum_{j=1..n-1} binomial(n-1,j)*j^k*A(n-j,k).

EXAMPLE

Square array begins:

   1,    1,     1,     1,       1,        1, ...

   0,    1,     3,     7,      15,       31, ...

   0,   -1,    -1,     5,      35,      149, ...

   0,   -2,   -26,  -146,    -650,    -2642, ...

   0,    9,    29,  -351,   -5251,   -46071, ...

   0,    6,   756,  9936,   83376,   559656, ...

   0, -155, -1793, 51421, 1623439, 28735405, ...

MATHEMATICA

T[n_, k_] := T[n, k] = n^k - Sum[Binomial[n-1, j] * j^k * T[n-j, k], {j, 1, n-1}]; Table[T[k, n - k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 12 2021 *)

CROSSREFS

Columns k=0..4 give A000007(n-1), A009306, A033464, A300452, A306325.

A(n,n) gives A320939.

Sequence in context: A151510 A151512 A106800 * A227320 A318507 A055807

Adjacent sequences:  A308481 A308482 A308483 * A308485 A308486 A308487

KEYWORD

sign,tabl

AUTHOR

Seiichi Manyama, May 30 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 13:46 EDT 2022. Contains 357062 sequences. (Running on oeis4.)