|
|
A055807
|
|
Triangle T read by rows: T(i,j) = R(i-j,j), where R(i,0) = 1 for i >= 0, R(0,j) = 0 for j >= 1, and R(i,j) = Sum_{h=0..i-1, k=0..j} R(h,k) for i >= 1 and j >= 1.
|
|
11
|
|
|
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 4, 1, 0, 1, 15, 12, 5, 1, 0, 1, 31, 32, 18, 6, 1, 0, 1, 63, 80, 56, 25, 7, 1, 0, 1, 127, 192, 160, 88, 33, 8, 1, 0, 1, 255, 448, 432, 280, 129, 42, 9, 1, 0, 1, 511, 1024, 1120, 832, 450, 180, 52, 10, 1, 0, 1, 1023
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
COMMENTS
|
Formatted as a triangular array, it is [1, 0, 1, 1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 0, -1, 1, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 05 2006
The square array (R(n,k): n,k >= 0) referred to in the name of the sequence is actually A050143. - Petros Hadjicostas, Feb 13 2021
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1-2*x)*(1-x*y)/((1-x)*(1-x*y-2*x+x^2*y)). - R. J. Mathar, Aug 11 2015
T(n,k) = A050143(n-k, k) for 0 <= k <= n.
T(n,k) = (n-k)*hypergeom([-n + k + 1, k], [2], -1) = Sum_{s=1..n-k} binomial(n-k,s)*binomial(s+k-2,k-1) for 1 <= k <= n.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 2 <= k <= n-1 with initial conditions T(n,0) = 1 for n >= 0, T(n,n) = 0 for n >= 1, and T(n,1) = 2^(n-1) - 1 for n >= 2. (End)
|
|
EXAMPLE
|
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 0;
1, 1, 0;
1, 3, 1, 0;
1, 7, 4, 1, 0;
1, 15, 12, 5, 1, 0;
1, 31, 32, 18, 6, 1, 0;
1, 63, 80, 56, 25, 7, 1, 0;
1, 127, 192, 160, 88, 33, 8, 1, 0;
1, 255, 448, 432, 280, 129, 42, 9, 1, 0;
...
Florez et al. (2019) give the triangle in this form:
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
3, 1, 0, 0, 0, 0, 0, 0, 0, ...
7, 4, 1, 0, 0, 0, 0, 0, 0, ...
15, 12, 5, 1, 0, 0, 0, 0, 0, ...
31, 32, 18, 6, 1, 0, 0, 0, 0, ...
63, 80, 56, 25, 7, 1, 0, 0, 0, ...
127, 192, 160, 88, 33, 8, 1, 0, 0, ...
255, 448, 432, 280, 129, 42, 9, 1, 0, ...
511, 1024, 1120, 832, 450, 180, 52, 10, 1, ...
...
|
|
MAPLE
|
T:= proc(i, j) option remember;
if j=0 then 1
elif i=0 then 0
else add(add(T(h, m), m=0..j), h=0..i-1)
fi; end:
seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Jan 23 2020
|
|
MATHEMATICA
|
T[i_, j_]:= T[i, j]= If[j==0, 1, If[i==0, 0, Sum[T[h, m], {h, 0, i-1}, {m, 0, j}]]]; Table[T[n-k, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 23 2020 *)
|
|
PROG
|
(PARI) T(i, j) = if(j==0, 1, if(i==0, 0, sum(h=0, i-1, sum(m=0, j, T(h, m) ))));
for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Jan 23 2020
(Magma)
function T(i, j)
if j eq 0 then return 1;
elif i eq 0 then return 0;
else return (&+[(&+[T(h, m): m in [0..j]]): h in [0..i-1]]);
end if; return T; end function;
[T(n-k, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 23 2020
(Sage)
@CachedFunction
def T(i, j):
if j==0: return 1
elif i==0: return 0
else: return sum(sum(T(h, m) for m in (0..j)) for h in (0..i-1))
[[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 23 2020
(GAP)
T:= function(i, j)
if j=0 then return 1;
elif i=0 then return 0;
else return Sum([0..i-1], h-> Sum([0..j], m-> T(h, m) ));
fi; end;
Flat(List([0..12], n-> List([0..n], k-> T(n-k, k) ))); # G. C. Greubel, Jan 23 2020
|
|
CROSSREFS
|
Rows sums: A001519 (odd-indexed Fibonacci numbers).
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|