OFFSET
5,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 5..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: x^5*(1 +26*x -65*x^2 +60*x^3 -25*x^4 +4*x^5)/(1-x)^5. - Colin Barker, Feb 22 2012
From G. C. Greubel, Jan 23 2020: (Start)
a(n) = (240 -54*n -49*n^2 +6*n^3 +n^4)/24 for n > 5, with a(5) = 1.
E.g.f.: (-1200 -720*x +100*x^3 +25*x^4 -4*x^5 + (1200 -480*x -120*x^2 +60*x^3 +5*x^4)*exp(x))/120. (End)
MAPLE
seq( `if`(n=5, 1, (240 -54*n -49*n^2 +6*n^3 +n^4)/24), n=5..40); # G. C. Greubel, Jan 23 2020
MATHEMATICA
Table[If[n==5, 1, (240 -54*n -49*n^2 +6*n^3 +n^4)/24], {n, 5, 40}] (* G. C. Greubel, Jan 23 2020 *)
PROG
(PARI) vector(40, n, my(m=n+4); if(m==5, 1, (240 -54*m -49*m^2 +6*m^3 +m^4)/24)) \\ G. C. Greubel, Jan 23 2020
(Magma) [1] cat [(240 -54*n -49*n^2 +6*n^3 +n^4)/24: n in [6..40]]; // G. C. Greubel, Jan 23 2020
(Sage) [1]+[(240 -54*n -49*n^2 +6*n^3 +n^4)/24 for n in (6..40)] # G. C. Greubel, Jan 23 2020
(GAP) Concatenation([1], List([6..40], n-> (240 -54*n -49*n^2 +6*n^3 +n^4)/24 )); # G. C. Greubel, Jan 23 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved