login
A101040
If n has one or two prime-factors then 1 else 0.
9
0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
OFFSET
1,1
COMMENTS
a(A033942(n))=0; for n>1: a(A037143(n))=1;
a(A000040(n))=1; a(A001358(n))=1;
A101041(n) = Sum(a(k): 1<=k<=n) + 1.
Primes counted with multiplicity. - Harvey P. Dale, Feb 16 2024
FORMULA
a(n) = A010051(n)+A064911(n) = 0^floor(A001222(n)/3)-0^(n-1).
a(1) = 0; for n > 1, a(n) = A063524(A032742(A032742(n))). - Antti Karttunen, Nov 23 2017
MATHEMATICA
a[n_] := If[n == 1, 0, Boole[PrimeOmega[n] <= 2]];
Array[a, 105] (* Jean-François Alcover, Dec 02 2021 *)
PROG
(Scheme) (define (A101040 n) (if (= 1 n) 0 (A063524 (A032742 (A032742 n))))) ;; Antti Karttunen, Nov 23 2017
(PARI) vector(105, k, bigomega(k)<=2&&k>1) \\ Hugo Pfoertner, Dec 02 2021
CROSSREFS
Characteristic function of A037143 (without its initial term 1).
Sequence in context: A135947 A360123 A211487 * A341591 A306453 A175629
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 28 2004
STATUS
approved