OFFSET
0
COMMENTS
The first polynomial showing a coefficient other than -1 or 1 is Psi_561(x). Curiously, 561 is the smallest Carmichael number.
LINKS
Pieter Moree, Inverse cyclotomic polynomials, Journal of Number Theory, Volume 129, Issue 3, March 2009, Pages 667-680.
Eric Weisstein's MathWorld, Cyclotomic Polynomial.
Wikipedia, Cyclotomic Polynomial.
FORMULA
Phi_n(x) * Psi_n(x) = x^n - 1, where Phi_n(x) is the n-th cyclotomic polynomial.
EXAMPLE
Phi_10(x)*Psi_10(x) = (1-x+x^2-x^3+x^4)*(-1-x+x^5+x^6) = -1+x^10.
Inverse cyclotomic polynomials begin:
n: Psi_n(x)
0: 0,
1: 1,
2: -1 + x,
3: -1 + x,
4: -1 + x^2,
5: -1 + x,
6: -1 - x + x^3 + x^4,
7: -1 + x,
8: -1 + x^4,
9: -1 + x^3,
10: -1 - x + x^5 + x^6
...
Coefficients begin:
0: 0;
1: 1;
2: -1, 1;
3: -1, 1;
4: -1, 0, 1;
5: -1, 1;
6: -1, -1, 0, 1, 1;
7: -1, 1;
8: -1, 0, 0, 0, 1;
9: -1, 0, 0, 1;
10: -1, -1, 0, 0, 0, 1, 1;
...
MATHEMATICA
Psi[n_, x_] := PolynomialQuotient[x^n-1, Cyclotomic[n, x], x]; Psi[0, _]=0;
row[n_] := CoefficientList[Psi[n, x], x]; row[0] = {0};
Table[row[n], {n, 0, 15}] // Flatten
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Jean-François Alcover, Feb 16 2019
STATUS
approved