login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291137
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of inverse of k-th cyclotomic polynomial.
15
1, -1, 0, 1, -1, 0, 1, -1, -1, 0, 1, -1, 1, -1, 0, 1, 0, 0, -1, -1, 0, 1, -1, -1, 1, 1, -1, 0, 1, 1, 0, 0, -1, -1, -1, 0, 1, -1, 0, 0, 1, 0, 1, -1, 0, 1, 0, 0, -1, 0, 0, 1, -1, -1, 0, 1, 0, 0, 0, -1, 1, -1, -1, 1, -1, 0, 1, 1, 0, 0, 0, 0, -1, 0, 0, -1, -1, 0, 1, -1, 0, -1, -1, 0, 1, 0, 1, 1, 1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, -1, -1, 0
OFFSET
0
COMMENTS
Column k is k-periodic, but also satisfies a recurrence relation of order A000010(k) = degree(Phi(k)), with signature given by coefficients of 1-Phi(k). - M. F. Hasler, Feb 16 2018
FORMULA
G.f. of column k, for k > 1, is 1/Phi(k) = Product_{d|k} 1/(1 - x^(k/d))^mu(d), where mu() is the Moebius function A008683.
Diagonal equals row 0, T(k,k) = T(0,k) = (-1)^[k=1]. - M. F. Hasler, Mar 01 2018
EXAMPLE
G.f. of column 1: 1/(x - 1).
G.f. of column 2: 1/(1 + x).
G.f. of column 3: 1/(1 + x + x^2).
G.f. of column 4: 1/(1 + x^2).
G.f. of column 5: 1/(1 + x + x^2 + x^3 + x^4).
G.f. of column 6: 1/(1 - x + x^2).
G.f. of column 7: 1/(1 + x + x^2 + x^3 + x^4 + x^5 + x^6).
G.f. of column 8: 1/(1 + x^4).
G.f. of column 9: 1/(1 + x^3 + x^6).
...
Square array begins:
1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, -1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, ...
0, -1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, ...
0, -1, -1, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, ...
0, -1, 1, -1, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, ...
0, -1, -1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[1/Cyclotomic[k, x], {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten
PROG
(PARI) T(n, k)={k||return(!n); polcoeff(1/(polcyclo(k)+O('x^(1+n%=k))), n)} \\ M. F. Hasler, Mar 01 2018
CROSSREFS
Columns k=0..6 give A000007, A057428 (with a(0) = -1), A033999, A049347, A056594, A010891, A010892.
Further columns are given in A014016 (k=7) - A016327 (k=2318) with a few omissions completed by A240328 (k=37) - A240467 (k=152).
For exhaustive explicit lists see cross references of A240328 (k=3 .. 75) and A240467 (k=76 .. 253), and link to the Index.
Sequence in context: A276395 A232750 A080764 * A285421 A285431 A267621
KEYWORD
sign,tabl
AUTHOR
Ilya Gutkovskiy, Aug 18 2017
EXTENSIONS
Edited by M. F. Hasler, Feb 16 2018, Mar 01 2018
STATUS
approved