OFFSET
0
COMMENTS
Column k is k-periodic, but also satisfies a recurrence relation of order A000010(k) = degree(Phi(k)), with signature given by coefficients of 1-Phi(k). - M. F. Hasler, Feb 16 2018
LINKS
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
FORMULA
G.f. of column k, for k > 1, is 1/Phi(k) = Product_{d|k} 1/(1 - x^(k/d))^mu(d), where mu() is the Moebius function A008683.
Diagonal equals row 0, T(k,k) = T(0,k) = (-1)^[k=1]. - M. F. Hasler, Mar 01 2018
EXAMPLE
G.f. of column 1: 1/(x - 1).
G.f. of column 2: 1/(1 + x).
G.f. of column 3: 1/(1 + x + x^2).
G.f. of column 4: 1/(1 + x^2).
G.f. of column 5: 1/(1 + x + x^2 + x^3 + x^4).
G.f. of column 6: 1/(1 - x + x^2).
G.f. of column 7: 1/(1 + x + x^2 + x^3 + x^4 + x^5 + x^6).
G.f. of column 8: 1/(1 + x^4).
G.f. of column 9: 1/(1 + x^3 + x^6).
...
Square array begins:
1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, -1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, ...
0, -1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, ...
0, -1, -1, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, ...
0, -1, 1, -1, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, ...
0, -1, -1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[1/Cyclotomic[k, x], {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten
PROG
(PARI) T(n, k)={k||return(!n); polcoeff(1/(polcyclo(k)+O('x^(1+n%=k))), n)} \\ M. F. Hasler, Mar 01 2018
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Ilya Gutkovskiy, Aug 18 2017
EXTENSIONS
Edited by M. F. Hasler, Feb 16 2018, Mar 01 2018
STATUS
approved