login
A291139
Primes of the form floor(k^(3/2)) for some integer k.
2
2, 5, 11, 31, 41, 89, 103, 181, 281, 311, 353, 419, 769, 797, 811, 839, 853, 911, 1091, 1153, 1201, 1217, 1249, 1499, 1621, 1873, 2081, 2557, 2999, 3307, 3533, 3671, 3881, 3929, 4289, 5431, 6131, 6269, 6491, 6547, 7001, 7349, 7583
OFFSET
1,1
COMMENTS
While Piatetski-Shapiro proved that there are infinitely many primes of the form floor(n^e) with 1 < e < 12/11, it is not currently known if this sequence is infinite.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
Conjecturally, a(n) ~ (1.5 n log n)^1.5 and there are ~ x^(2/3)/log x members of this sequence up to x. - Charles R Greathouse IV, Oct 14 2017
EXAMPLE
a(1) = floor(2^(3/2)) = floor(2.8...) = 2.
a(2) = floor(3^(3/2)) = floor(5.1...) = 5.
floor(4^(3/2)) = floor(8) = 8 is composite.
a(3) = floor(5^(3/2)) = floor(11.1) = 11.
floor(6^(3/2)) = floor(14.6...) = 14 is composite.
floor(7^(3/2)) = floor(18.5...) = 18 is composite.
floor(8^(3/2)) = floor(22.6...) = 22 is composite.
floor(9^(3/2)) = floor(27) = 27 is composite.
a(4) = floor(10^(3/2)) = floor(31.6) = 31.
MATHEMATICA
Select[Floor[Range[1000]^(3/2)], PrimeQ] (* Harvey P. Dale, Jul 01 2019 *)
PROG
(PARI) list(lim)=my(v=List(), t); lim\=1; for(n=2, sqrtnint((lim+1)^2, 3)-ispower(lim+1, 3), if(isprime(t=sqrtint(n^3)), listput(v, t))); Vec(v)
CROSSREFS
Cf. A200141.
Sequence in context: A292210 A079225 A139466 * A139467 A124481 A002862
KEYWORD
nonn
AUTHOR
STATUS
approved