login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291135
Number of defective parking functions of length n and defect nine.
2
1, 2146, 754943, 143336610, 19795924787, 2267392009178, 231141766226605, 21881366451890002, 1976997422623843358, 173666031731576614842, 15025473411620865716938, 1292364106829281911023554, 111260031164008673095102874, 9635674549219284395173044506
OFFSET
10,2
LINKS
Peter J. Cameron, Daniel Johannsen, Thomas Prellberg, Pascal Schweitzer, Counting Defective Parking Functions, arXiv:0803.0302 [math.CO], 2008.
FORMULA
a(n) ~ (-13*exp(1)/51840 + 92*exp(2)/315 - 7533*exp(3)/560 + 6016*exp(4)/45 - 11875*exp(5)/24 + 864*exp(6) - 4753*exp(7)/6 + 392*exp(8) - 99*exp(9) + 10*exp(10)) * n^(n-1). - Vaclav Kotesovec, Aug 19 2017
MAPLE
S:= (n, k)-> add(binomial(n, i)*k*(k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k):
a:= n-> S(n, 9)-S(n, 10):
seq(a(n), n=10..23);
MATHEMATICA
S[n_, k_] := Sum[Binomial[n, i]*k*(k+i)^(i-1)*(n-k-i)^(n-i), {i, 0, n-k}];
a[n_] := S[n, 9] - S[n, 10];
Table[a[n], {n, 10, 23}] (* Jean-François Alcover, Feb 24 2019, from Maple *)
CROSSREFS
Column k=9 of A264902.
Sequence in context: A294751 A251893 A251870 * A251852 A251846 A236150
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 18 2017
STATUS
approved