login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of defective parking functions of length n and defect nine.
2

%I #12 Feb 24 2019 08:42:01

%S 1,2146,754943,143336610,19795924787,2267392009178,231141766226605,

%T 21881366451890002,1976997422623843358,173666031731576614842,

%U 15025473411620865716938,1292364106829281911023554,111260031164008673095102874,9635674549219284395173044506

%N Number of defective parking functions of length n and defect nine.

%H Alois P. Heinz, <a href="/A291135/b291135.txt">Table of n, a(n) for n = 10..386</a>

%H Peter J. Cameron, Daniel Johannsen, Thomas Prellberg, Pascal Schweitzer, <a href="https://arxiv.org/abs/0803.0302">Counting Defective Parking Functions</a>, arXiv:0803.0302 [math.CO], 2008.

%F a(n) ~ (-13*exp(1)/51840 + 92*exp(2)/315 - 7533*exp(3)/560 + 6016*exp(4)/45 - 11875*exp(5)/24 + 864*exp(6) - 4753*exp(7)/6 + 392*exp(8) - 99*exp(9) + 10*exp(10)) * n^(n-1). - _Vaclav Kotesovec_, Aug 19 2017

%p S:= (n, k)-> add(binomial(n, i)*k*(k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k):

%p a:= n-> S(n, 9)-S(n, 10):

%p seq(a(n), n=10..23);

%t S[n_, k_] := Sum[Binomial[n, i]*k*(k+i)^(i-1)*(n-k-i)^(n-i), {i, 0, n-k}];

%t a[n_] := S[n, 9] - S[n, 10];

%t Table[a[n], {n, 10, 23}] (* _Jean-François Alcover_, Feb 24 2019, from Maple *)

%Y Column k=9 of A264902.

%K nonn

%O 10,2

%A _Alois P. Heinz_, Aug 18 2017