login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294751
Squarefree products of k primes that are symmetrically distributed around their average. Case k = 4.
4
2145, 4641, 4845, 5005, 9177, 11305, 13485, 13585, 17017, 21489, 21505, 23529, 26445, 31465, 31857, 33649, 35409, 35581, 36685, 42441, 43401, 46189, 46345, 49569, 50065, 53985, 60697, 61705, 63085, 63597, 65569, 67821, 69745, 77745, 80845, 83049, 87505, 88881
OFFSET
1,1
LINKS
EXAMPLE
2145 = 3*5*11*13. Prime factors average is (3 + 5 + 11 + 13)/4 = 8 and 3 + 5 = 8 = 13 - 5, 5 + 3 = 8 = 11 - 3.
MAPLE
with(numtheory): P:=proc(q, h) local a, b, k, n, ok;
for n from 2*3*5*7 to q do if not isprime(n) and issqrfree(n) then a:=ifactors(n)[2];
if nops(a)=h then b:=2*add(a[k][1], k=1..nops(a))/nops(a); ok:=1;
for k from 1 to trunc(nops(a)/2) do if a[k][1]+a[nops(a)-k+1][1]<>b then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; fi; od; end: P(10^9, 4);
# Alternative:
N:= 10^5: # to get terms <= N
M:= floor(max(fsolve(3*5*(M-5)*(M-3) = N))):
P:= select(isprime, [seq(i, i=3..M/2, 2)]): nP:= nops(P):
Res:= NULL:
for m from 10 by 2 to M do
for ix from 1 to nP-2 do
x:= P[ix];
if x >= m/2 or (x*(m-x))^2 >= N then break fi;
if not isprime(m-x) then next fi;
for iy from ix+1 to nP-1 do
y:= P[iy];
if y >= m/2 or x*(m-x)*y*(m-y) >= N then break fi;
if not isprime(m-y) then next fi;
Res:= Res, x*(m-x)*y*(m-y);
od od od:
sort([Res]); # Robert Israel, May 19 2019
PROG
(PARI) isok(n, nb=4) = {if (issquarefree(n) && (omega(n)==nb), f = factor(n)[, 1]~; avg = vecsum(f)/#f; for (k=1, #f\2, if (f[k] + f[#f-k+1] != 2*avg, return(0)); ); return (1); ); } \\ Michel Marcus, Nov 10 2017
CROSSREFS
Subsequence of A046386.
Cf. A006881 (k=2), A262723 (k=3), A294752 (k=5), A294776 (k=6).
Sequence in context: A179271 A118576 A259413 * A251893 A251870 A291135
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Nov 08 2017
EXTENSIONS
More terms from Giovanni Resta, Nov 09 2017
STATUS
approved