login
A262723
Products of three distinct primes that form an arithmetic progression.
10
105, 231, 627, 897, 935, 1581, 1729, 2465, 2967, 4123, 4301, 4715, 5487, 7685, 7881, 9717, 10707, 11339, 14993, 16377, 17353, 20213, 20915, 23779, 25327, 26331, 26765, 29341, 29607, 32021, 33335, 40587, 40807, 42911, 48635, 49321, 54739, 55581, 55637, 59563, 60297, 63017
OFFSET
1,1
COMMENTS
This sequence is subsequence of A046389, A088595, A187073, A203614 and A229094.
Obviously, the most repeated prime divisor for values of a(n) is 3. - Altug Alkan, Sep 30 2015
These are numbers 3(2k + 3)(4k + 3) where 2k + 3 and 4k + 3 are prime, together with numbers p(p - 6d)(p + 6d) where p, p - 6d, and p + 6d are prime. - Charles R Greathouse IV, Mar 16 2018
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
627 is in this sequence because 627=3*11*19, and 3, 11, 19 form an arithmetic progression (11-3 = 19-11).
MATHEMATICA
Select[Range@ 64000, And[SquareFreeQ@ #, PrimeOmega@ # == 3, Subtract @@ Differences[First /@ FactorInteger@ #] == 0] &] (* Michael De Vlieger, Sep 30 2015 *)
PROG
(PARI) for(i=2, 10^5, if(issquarefree(i)&&omega(i)==3, f=factor(i); if(f[1, 1]+f[3, 1]==2*f[2, 1], print1(i, ", "))))
(PARI) list(lim)=my(v=List()); lim\=1; forstep(d=6, sqrtint(lim\10), 6, forprime(p=d+5, solve(x=sqrtn(lim, 3), d*sqrtn(lim, 3), x^3-d^2*x-lim)+.5, if(isprime(p-d) && isprime(p+d), listput(v, p*(p-d)*(p+d))))); forprime(p=5, (sqrt(24*lim+81)-27)/12+3.5, if(isprime(2*p-3), listput(v, p*(2*p-3)*3))); Set(v) \\ Charles R Greathouse IV, Mar 16 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Antonio Roldán, Sep 28 2015
EXTENSIONS
New name from Peter Munn, Aug 27 2022
STATUS
approved