OFFSET
1,1
COMMENTS
Obviously, the most repeated prime divisor for values of a(n) is 3. - Altug Alkan, Sep 30 2015
These are numbers 3(2k + 3)(4k + 3) where 2k + 3 and 4k + 3 are prime, together with numbers p(p - 6d)(p + 6d) where p, p - 6d, and p + 6d are prime. - Charles R Greathouse IV, Mar 16 2018
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
627 is in this sequence because 627=3*11*19, and 3, 11, 19 form an arithmetic progression (11-3 = 19-11).
MATHEMATICA
Select[Range@ 64000, And[SquareFreeQ@ #, PrimeOmega@ # == 3, Subtract @@ Differences[First /@ FactorInteger@ #] == 0] &] (* Michael De Vlieger, Sep 30 2015 *)
PROG
(PARI) for(i=2, 10^5, if(issquarefree(i)&&omega(i)==3, f=factor(i); if(f[1, 1]+f[3, 1]==2*f[2, 1], print1(i, ", "))))
(PARI) list(lim)=my(v=List()); lim\=1; forstep(d=6, sqrtint(lim\10), 6, forprime(p=d+5, solve(x=sqrtn(lim, 3), d*sqrtn(lim, 3), x^3-d^2*x-lim)+.5, if(isprime(p-d) && isprime(p+d), listput(v, p*(p-d)*(p+d))))); forprime(p=5, (sqrt(24*lim+81)-27)/12+3.5, if(isprime(2*p-3), listput(v, p*(2*p-3)*3))); Set(v) \\ Charles R Greathouse IV, Mar 16 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Antonio Roldán, Sep 28 2015
EXTENSIONS
New name from Peter Munn, Aug 27 2022
STATUS
approved