login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291132
Number of defective parking functions of length n and defect six.
2
1, 303, 34660, 2743112, 181875244, 11023248678, 639875755364, 36555471741284, 2090131479753756, 120898503338385149, 7124218746544184628, 429662666436736162636, 26601747798152634836236, 1694092238645618305809580, 111106187207006959809867012
OFFSET
7,2
LINKS
Peter J. Cameron, Daniel Johannsen, Thomas Prellberg, Pascal Schweitzer, Counting Defective Parking Functions, arXiv:0803.0302 [math.CO], 2008.
FORMULA
a(n) ~ (43*exp(1)/720 - 88*exp(2)/15 + 405*exp(3)/8 - 368*exp(4)/3 + 235*exp(5)/2 - 48*exp(6) + 7*exp(7)) * n^(n-1). - Vaclav Kotesovec, Aug 19 2017
MAPLE
S:= (n, k)-> add(binomial(n, i)*k*(k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k):
a:= n-> S(n, 6)-S(n, 7):
seq(a(n), n=7..23);
MATHEMATICA
S[n_, k_] := Sum[Binomial[n, i]*k*(k+i)^(i-1)*(n-k-i)^(n-i), {i, 0, n-k}];
a[n_] := S[n, 6] - S[n, 7];
Table[a[n], {n, 7, 23}] (* Jean-François Alcover, Feb 24 2019, from Maple *)
CROSSREFS
Column k=6 of A264902.
Sequence in context: A237093 A236813 A332130 * A328277 A253394 A214608
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 18 2017
STATUS
approved