login
A240467
Inverse of 152nd cyclotomic polynomial.
35
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0
OFFSET
0
COMMENTS
Periodic with period length 152. - Ray Chandler, Apr 03 2017
In general the expansion of 1/Phi(N) is N-periodic, but also satisfies a linear recurrence of lower order given by degree(Phi(N)) = phi(N) = A000010(N) < N. The signature is given by the coefficients of (1-Phi(N)). - M. F. Hasler, Feb 18 2018
LINKS
Index entries for linear recurrences with constant coefficients, order 72, signature (0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1).
MATHEMATICA
CoefficientList[Series[1/Cyclotomic[152, x], {x, 0, 200}], x]
PROG
(PARI) Vec(1/polcyclo(152) + O(x^99)) \\ Jinyuan Wang, Feb 28 2020
CROSSREFS
Cf. similar sequences (namely 1/Phi(N), N <= 75) listed in A240328.
Cf. also A240465 (76), A014086 (77), A014087 (78), A014093 (84), A014094 (85), A014096 (87), A014099 (90), A014100 (91), A014102 (93), A014104 (95), A014108 (99), A014111 (102), A014114 (105), A014119 (110), A014123 (114), A014124 (115), A014128 (119), A014129 (120), A014135 (126), A014139 (130), A014141 (132), A014142 (133), A014147 (138), A014149 (140), A014152 (143), A014154 (145), A014159 (150), A014163 (154) - A014165 (156), A014170 (161), A014174 (165), A014177 (168), A014179 (170), A014183 (174), A014184 (175), A014189 (180), A014191 (182), A014194 (185) - A014196 (187), A014199 (190), A014204 (195), A014207 (198), A014212 (203), A014218 (209), A014219 (210), A014226 (217), A014229 (220), A014230 (221), A014239 (230), A014240 (231), A014247 (238), A014256 (247), A014262 (253).
Sequence in context: A089510 A138885 A185115 * A014065 A014049 A016371
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, Apr 06 2014
STATUS
approved