The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185115 Number of connected 2-regular simple graphs on n vertices with girth at least 5. 14
 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 LINKS Jason Kimberley, Connected regular graphs with girth at least 5 FORMULA a(0)=1; for 0=5 , a(n)=1. This sequence is the inverse Euler transformation of A185325. EXAMPLE The null graph is vacuously 2-regular and, being acyclic, has infinite girth. There are no 2-regular simple graphs with 1 or 2 vertices. The n-cycle has girth n. CROSSREFS 2-regular simple graphs with girth at least 5: this sequence (connected), A185225 (disconnected), A185325 (not necessarily connected). Connected k-regular simple graphs with girth at least 5: A186725 (all k), A186715 (triangle); this sequence (k=2), A014372 (k=3), A058343 (k=4), A205295 (k=5). Connected 2-regular simple graphs with girth at least g: A179184 (g=3), A185114 (g=4), this sequence (g=5), A185116 (g=6), A185117 (g=7), A185118 (g=8), A185119 (g=9). Connected 2-regular simple graphs with girth exactly g: A185013 (g=3), A185014 (g=4), A185015 (g=5), A185016 (g=6), A185017 (g=7), A185018 (g=8). Sequence in context: A287801 A089510 A138885 * A240467 A014065 A014049 Adjacent sequences:  A185112 A185113 A185114 * A185116 A185117 A185118 KEYWORD nonn,easy AUTHOR Jason Kimberley, Jan 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 04:57 EDT 2020. Contains 334758 sequences. (Running on oeis4.)