login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185119 Number of connected 2-regular simple graphs on n vertices with girth at least 9. 10
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0

LINKS

Table of n, a(n) for n=0..101.

Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g

FORMULA

a(0)=1; for 0<n<9 a(n)=0; for n>=9 , a(n)=1.

Inverse Euler transformation of A185329.

EXAMPLE

The null graph is vacuously 2-regular and, being acyclic, has infinite girth.

There are no 2-regular simple graphs with 1 or 2 vertices.

The n-cycle has girth n.

CROSSREFS

2-regular simple graphs with girth at least 9: this sequence (connected), A185229 (disconnected), A185329 (not necessarily connected).

Connected k-regular simple graphs with girth at least 9: A186729 (all k), A186719 (triangular array), this sequence (k=2).

Connected 2-regular simple graphs with girth at least g: A179184 (g=3), A185114 (g=4), A185115 (g=5), A185116 (g=6), A185117 (g=7), A185118 (g=8), A185119 (g=9).

Connected 2-regular simple graphs with girth exactly g: A185013 (g=3), A185014 (g=4), A185015 (g=5), A185016 (g=6), A185017 (g=7), A185018 (g=8).

Sequence in context: A240355 A217096 A267142 * A280130 A279760 A287457

Adjacent sequences:  A185116 A185117 A185118 * A185120 A185121 A185122

KEYWORD

nonn,easy

AUTHOR

Jason Kimberley, Jan 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 15:33 EST 2018. Contains 299581 sequences. (Running on oeis4.)