This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185119 Number of connected 2-regular simple graphs on n vertices with girth at least 9. 10
 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 LINKS FORMULA a(0)=1; for 0=9 , a(n)=1. Inverse Euler transformation of A185329. EXAMPLE The null graph is vacuously 2-regular and, being acyclic, has infinite girth. There are no 2-regular simple graphs with 1 or 2 vertices. The n-cycle has girth n. CROSSREFS 2-regular simple graphs with girth at least 9: this sequence (connected), A185229 (disconnected), A185329 (not necessarily connected). Connected k-regular simple graphs with girth at least 9: A186729 (all k), A186719 (triangular array), this sequence (k=2). Connected 2-regular simple graphs with girth at least g: A179184 (g=3), A185114 (g=4), A185115 (g=5), A185116 (g=6), A185117 (g=7), A185118 (g=8), A185119 (g=9). Connected 2-regular simple graphs with girth exactly g: A185013 (g=3), A185014 (g=4), A185015 (g=5), A185016 (g=6), A185017 (g=7), A185018 (g=8). Sequence in context: A240355 A217096 A267142 * A280130 A304002 A279760 Adjacent sequences:  A185116 A185117 A185118 * A185120 A185121 A185122 KEYWORD nonn,easy AUTHOR Jason Kimberley, Jan 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 20:52 EDT 2018. Contains 316530 sequences. (Running on oeis4.)