This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A280130 Expansion of Product_{k>=2} (1 + x^(k^3)). 5
 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS Number of partitions of n into distinct cubes > 1. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..100000 (first 10001 terms from Antti Karttunen) FORMULA G.f.: Product_{k>=2} (1 + x^(k^3)). From Vaclav Kotesovec, Dec 26 2016: (Start) a(n) = Sum_{k=0..n} (-1)^(n-k) * A279329(k). a(n) + a(n-1) = A279329(n). a(n) ~ A279329(n)/2. (End) EXAMPLE a(35) = 1 because we have [27, 8]. From Antti Karttunen, Aug 30 2017: (Start) a(72) = 1 because there is just one solution: 72 = 4^3 + 2^3. a(216) = 2 because there are two solutions: 216 = 6^3 = 5^3 + 4^3 + 3^3. This is also the first point where the sequence obtains value larger than one. (End) MATHEMATICA nmax = 130; CoefficientList[Series[Product[1 + x^k^3, {k, 2, nmax}], {x, 0, nmax}], x] PROG (PARI) A280130(n, m=2) = { my(s=0); if(!n, 1, for(c=m, n, if(ispower(c, 3), s+=A280130(n-c, c+1))); (s)); }; \\ Antti Karttunen, Aug 30 2017 CROSSREFS Cf. A003108, A078128, A279329. Sequence in context: A015494 A267142 A185119 * A304002 A126811 A014057 Adjacent sequences:  A280127 A280128 A280129 * A280131 A280132 A280133 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Dec 26 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 16:40 EST 2019. Contains 319271 sequences. (Running on oeis4.)