login
A078128
Number of ways to write n as sum of cubes>1.
13
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 0, 2, 1, 0, 2, 0, 0, 1, 0, 2, 1, 0, 2, 0, 0, 1, 0, 2, 1
OFFSET
1,64
COMMENTS
a(A078129(n))=0; a(A078130(n))=1; a(A078131(n))>0;
Conjecture (lower bound): for all k exists b(k) such that a(n)>k for n>b(k); see b(0)=A078129(83)=154 and b(1)=A078130(63)=218.
LINKS
FORMULA
a(n) = 1/n*Sum_{k=1..n} (b(k)-1)*a(n-k), a(0) = 1, where b(k) is sum of cube divisors of k. - Vladeta Jovovic, Nov 20 2002
From Vaclav Kotesovec, Jan 05 2017: (Start)
a(n) = A003108(n) - A003108(n-1).
a(n) ~ exp(4*(Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * (Gamma(1/3) * Zeta(4/3))^(3/2) / (8 * 3^(5/2) * Pi^2 * n^2).
(End)
EXAMPLE
a(160)=4: 160 = 20*2^3 = 4^3+12*2^3 = 2*4^3+4*2^3 = 5^3+3^3+2^3.
MATHEMATICA
nmax = 105; CoefficientList[Series[Product[1/(1 - x^(k^3)), {k, 1, nmax}], {x, 0, nmax}], x] // Differences (* Jean-François Alcover, Mar 01 2019, after Vaclav Kotesovec *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 19 2002
STATUS
approved