login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078126
Negative determinant of n X n matrix M_{i,j}=1 if i=j or i+j=1 (mod 2).
4
-1, -1, 0, 1, 3, 5, 8, 11, 15, 19, 24, 29, 35, 41, 48, 55, 63, 71, 80, 89, 99, 109, 120, 131, 143, 155, 168, 181, 195, 209, 224, 239, 255, 271, 288, 305, 323, 341, 360, 379, 399, 419, 440, 461, 483, 505, 528, 551, 575, 599, 624, 649, 675, 701, 728, 755, 783, 811
OFFSET
0,5
COMMENTS
Apparently, also 6(n+3) times the Dedekind sum s(2,n+3). - Ralf Stephan, Sep 16 2013
LINKS
Moira Chas and Anthony Phillips, Self-intersection numbers of curves in the doubly-punctured plane , arXiv:1001.4568 [math.GT], 2010. [Jonathan Vos Post, Jan 27 2010]
Eric Weisstein's World of Mathematics, Dedekind Sum
FORMULA
G.f.: (-1 + x + 2*x^2 - x^3) / ((1 - x^2) * (1 - x)^2).
a(n) = A002620(n) - 1.
a(n) = A002623(n-2) - A002623(n-3) - 1.
a(n) = A024206(n-1) for all n in Z.
a(n) = floor( (n+2)(n-2)/4 ). - Wesley Ivan Hurt, Jun 16 2013
A004526(n) = a(n) - a(n-1) for all n in Z. - Michael Somos, Aug 22 2016
a(n) = Sum_{i=1..n+2} floor((n-i+1)/2). - Wesley Ivan Hurt, Sep 12 2017
E.g.f.: ((x^2 + x - 4)*cosh(x) + (x^2 + x - 5)*sinh(x))/4. - Stefano Spezia, Aug 06 2024
EXAMPLE
G.f. = -1 - x + x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 11*x^7 + 15*x^8 + 19*x^9 + ...
MAPLE
A078126:=n->floor((n + 2)*(n - 2)/4); seq(A078126(n), n=0..100); # Wesley Ivan Hurt, Jan 30 2014
MATHEMATICA
Table[Floor[(n + 2)(n - 2)/4], {n, 0, 100}] (* Wesley Ivan Hurt, Jan 30 2014 *)
LinearRecurrence[{2, 0, -2, 1}, {-1, -1, 0, 1}, 60] (* Harvey P. Dale, Sep 10 2015 *)
a[n_]:=-Det[Table[If[i==j ||Mod[i+j, 2]==1, 1, 0], {i, n}, {j, n}]]; Join[{-1}, Array[a, 57]] (* Stefano Spezia, Aug 06 2024 *)
PROG
(PARI) a(n)=-matdet(matrix(n, n, i, j, i==j||((i+j)%2))) /* Ralf Stephan, Sep 16 2013 */
(PARI) a(n)=sumdedekind(2, n+3)*6*(n+3) /* Ralf Stephan, Sep 16 2013 */
CROSSREFS
KEYWORD
sign,easy,nice
AUTHOR
Michael Somos, Nov 18 2002
EXTENSIONS
A-number twister corrected in cross-refs by R. J. Mathar, Feb 11 2010
STATUS
approved