login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373838
a(n) = 1 if n and A276150(n) are both multiples of 3, otherwise 0, where A276150 is the digit sum in the primorial base.
4
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0
OFFSET
0
FORMULA
a(n) = A079978(n) * A373840(n) = A079978(n) * A079978(A276150(n)).
a(n) = A079978(A373833(n)).
a(n) = A373836(A276086(n)).
If a(x) = a(y) = A329041(x,y) = 1, then a(x+y) = 1 also. See explanation in the comments of A373839.
PROG
(PARI)
A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); };
A373838(n) = !(gcd(n, A276150(n))%3);
CROSSREFS
Characteristic function of A373839.
Cf. also A373598.
Sequence in context: A015899 A015494 A267142 * A185119 A280130 A304002
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Jun 19 2024
STATUS
approved