login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276150 Sum of digits when n is written in primorial base (A049345); minimal number of primorials (A002110) that add to n. 49
0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 7, 8, 8, 9, 9, 10, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The sum of digits of n in primorial base is odd if n is 1 or 2 (mod 4) and even if n is 0 or 3 (mod 4). Proof: primorials are 1 or 2 (mod 4) and a(n) can be constructed via the greedy algorithm. So if n = 4k + r where 0 <= r < 4, 4k needs an even number of primorials and r needs hammingweight(r) = A000120(r) primorials. Q.E.D. - David A. Corneth, Feb 27 2019

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..30030

Index entries for sequences related to primorial base

FORMULA

a(n) = 1 + a(A276151(n)) = 1 + a(n-A002110(A276084(n))), a(0) = 0.

or for n >= 1: a(n) = 1 + a(n-A260188(n)).

Other identities and observations. For all n >= 0:

a(n) = A001222(A276086(n)) = A001222(A278226(n)).

a(n) >= A267263(n).

From Antti Karttunen, Feb 27 2019: (Start)

a(n) = A000120(A277022(n)).

a(A283477(n)) = A324342(n).

(End)

EXAMPLE

For n=24, which is "400" in primorial base (as 24 = 4*(3*2*1) + 0*(2*1) + 0*1, see A049345), the sum of digits is 4, thus a(24) = 4.

MATHEMATICA

nn = 120; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[# + 1] <= nn &]]; Table[Total@ IntegerDigits[n, b], {n, 0, nn}] (* Version 10.2, or *)

nn = 120; f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total@ f@ n, {n, 0, 120}] (* Michael De Vlieger, Aug 26 2016 *)

PROG

(Scheme, two versions)

(definec (A276150 n) (if (zero? n) 0 (+ 1 (A276150 (- n (A002110 (A276084 n)))))))

(define (A276150 n) (A001222 (A276086 n)))

(Python)

from sympy import prime, primefactors

def Omega(n): return 0 if n==1 else Omega(n//primefactors(n)[0]) + 1

def a276086(n):

    i=0

    m=pr=1

    while n>0:

        i+=1

        N=prime(i)*pr

        if n%N!=0:

            m*=(prime(i)**((n%N)/pr))

            n-=n%N

        pr=N

    return m

def a(n): return Omega(a276086(n))

print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 23 2017

(PARI) A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; \\ Antti Karttunen, Feb 27 2019

CROSSREFS

Cf. A000120, A001222, A002110, A049345, A053589, A235168, A260188, A267263, A276084, A276086, A276151, A277022, A278226, A283477, A319713, A319715, A321683, A324342, A324382, A324383, A324386, A324387.

Cf. A014601, A042963 (positions of even and odd terms).

Differs from analogous A034968 for the first time at n=24.

Sequence in context: A089293 A034968 A341513 * A275729 A236920 A054707

Adjacent sequences:  A276147 A276148 A276149 * A276151 A276152 A276153

KEYWORD

nonn,look,base

AUTHOR

Antti Karttunen, Aug 22 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 12:35 EDT 2022. Contains 357264 sequences. (Running on oeis4.)