OFFSET
0,4
COMMENTS
The sum of digits of n in primorial base is odd if n is 1 or 2 (mod 4) and even if n is 0 or 3 (mod 4). Proof: primorials are 1 or 2 (mod 4) and a(n) can be constructed via the greedy algorithm. So if n = 4k + r where 0 <= r < 4, 4k needs an even number of primorials and r needs hammingweight(r) = A000120(r) primorials. Q.E.D. - David A. Corneth, Feb 27 2019
LINKS
FORMULA
or for n >= 1: a(n) = 1 + a(n-A260188(n)).
Other identities and observations. For all n >= 0:
From Antti Karttunen, Feb 27 2019: (Start)
(End)
EXAMPLE
For n=24, which is "400" in primorial base (as 24 = 4*(3*2*1) + 0*(2*1) + 0*1, see A049345), the sum of digits is 4, thus a(24) = 4.
MATHEMATICA
nn = 120; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[# + 1] <= nn &]]; Table[Total@ IntegerDigits[n, b], {n, 0, nn}] (* Version 10.2, or *)
nn = 120; f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total@ f@ n, {n, 0, 120}] (* Michael De Vlieger, Aug 26 2016 *)
PROG
(Scheme, two versions)
(Python)
from sympy import prime, primefactors
def Omega(n): return 0 if n==1 else Omega(n//primefactors(n)[0]) + 1
def a276086(n):
i=0
m=pr=1
while n>0:
i+=1
N=prime(i)*pr
if n%N!=0:
m*=(prime(i)**((n%N)/pr))
n-=n%N
pr=N
return m
def a(n): return Omega(a276086(n))
print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 23 2017
(PARI) A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; \\ Antti Karttunen, Feb 27 2019
CROSSREFS
Cf. A000120, A001222, A002110, A049345, A053589, A235168, A260188, A267263, A276084, A276086, A276151, A277022, A278226, A283477, A319713, A319715 (inverse Möbius transform), A321683, A324342, A324382, A324383, A324386, A324387, A371091, A373605, A373606, A373607.
Cf. A333426 [k such that a(k)|k], A339215 [numbers not of the form x+a(x) for any x], A358977 [k such that gcd(k, a(k)) = 1].
Differs from analogous A034968 for the first time at n=24.
KEYWORD
AUTHOR
Antti Karttunen, Aug 22 2016
STATUS
approved