login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276152 a(n) = {smallest prime not dividing n} times {greatest primorial number which divides n} = A053669(n) * A053589(n). 6
2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 210, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 210, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 210, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) with n odd must = 2 because 1 is the only odd primorial, thereby the only primorial dividing odd n, and 2 is the smallest prime not dividing odd n. - Michael De Vlieger, Aug 25 2016

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..2310

FORMULA

a(n) = A053589(n) * A053669(n).

a(n) = A002110(A257993(n)).

EXAMPLE

a(6) = 30 because the smallest nondivisor prime 6 = 5 and the smallest primorial dividing 6 is 6 itself. 5 * 6 = 30.

MATHEMATICA

Table[If[n == 1, 2, Prime@If[! MemberQ[#, 0], Length@ # + 1, Position[#, 0][[1, 1]]] (Times @@ Prime@ Flatten@ Position[TakeWhile[#, # > 0 &], 1]) &@ Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@# -> 1 &, f]]@ FactorInteger@ n], {n, 120}] (* or *)

Table[If[OddQ@ n, 2, Function[p, Prime[p + 1] Product[Prime@ k, {k, #[[p]]}]][LengthWhile[Differences@ #, # == 1 &] + 1] &@ PrimePi[FactorInteger[n][[All, 1]]]], {n, 120}] (* Michael De Vlieger, Aug 25 2016 *)

PROG

(Scheme, two versions)

(define (A276152 n) (* (A053669 n) (A053589 n)))

(define (A276152 n) (A002110 (A257993 n)))

CROSSREFS

Cf. A002110, A053589, A053669, A257993.

Cf. also A276154.

Sequence in context: A127356 A232273 A307892 * A270360 A163904 A152780

Adjacent sequences:  A276149 A276150 A276151 * A276153 A276154 A276155

KEYWORD

nonn

AUTHOR

Antti Karttunen, Aug 24 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 8 04:16 EDT 2020. Contains 335504 sequences. (Running on oeis4.)