|
|
A235168
|
|
Triangle read by rows: row n gives digits of n in primorial base.
|
|
18
|
|
|
0, 1, 1, 0, 1, 1, 2, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 2, 1, 1, 2, 2, 0, 2, 2, 1, 3, 0, 0, 3, 0, 1, 3, 1, 0, 3, 1, 1, 3, 2, 0, 3, 2, 1, 4, 0, 0, 4, 0, 1, 4, 1, 0, 4, 1, 1, 4, 2, 0, 4, 2, 1, 1, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
COMMENTS
|
T(n,k) = A108731(n,k) for k=0..23; a(n) = A108731(n) for n=0..63), when both tables are seen as flattened lists;
T(n,k) < 10 for k = 1..A235224(n) and n < 2100 = 10 * 7#.
When read from right to left, the row n gives exponents for successive primes 2, 3, 5, 7, 11, etc., in A276086(n). - Antti Karttunen, Mar 15 2021
|
|
LINKS
|
|
|
EXAMPLE
|
. n | .. + _*7# + _*5# + _*3# + _*2# + _*1# | row(n)
. ---------+---------------------------------------+---------------------
. 10 | 1*6 + 2*2 + 0*1 | [1,2,0], A276086(10) = 5 * 3^2
. 100 | 3*30 + 1*6 + 2*2 + 0*1 | [3,1,2,0]
. 1000 | 4*210 + 5*30 + 1*6 + 2*2n + 0*1 | [4,5,1,2,0]
. 2099 | 9*210 + 6*30 + 4*6 + 2*2 + 1*1 | [9,6,4,2,1]
. 2100 | 10*210 + 0*30 + 0*6 + 0*2 + 0*1 | [10,0,0,0,0]
. 10000 | 4*2310 + 3*210 + 4*30 + 1*6 + 2*2 | [4,3,4,1,2,0]
. 100000 | 3*30030+4*2310+3*210+1*30+1*6+2*2+0*1 | [3,4,3,1,1,2,0]
. 1000000 | | [1,16,3,9,6,1,2,0]
. 10000000 | | [1,0,10,0,0,0,1,2,0]
. 1000000 = 1*510510+16*30030+3*2310+9*210+6*30+1*6+2*2+0*1
. 10000000 = 1*9699690+0*510510+10*30030+0*2310+0*210+0*30+1*6+2*2+0*1 .
|
|
PROG
|
(Haskell)
a235168 n k = a235168_row n !! k
a235168_row 0 = [0]
a235168_row n = t n $ reverse $ takeWhile (<= n) a002110_list
where t 0 [] = []
t x (b:bs) = x' : t m bs where (x', m) = divMod x b
a235168_tabf = map a235168_row [0..]
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|