This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A235224 a(0) = 0, and for n > 0, a(n) = largest k such that A002110(k-1) <= n, where A002110(k) gives the k-th primorial number. 8
 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For n > 0: a(n) = (length of row n in A235168) = A055642(A049345(n)). For n > 0, a(n) gives the length of primorial base expansion of n. Also, after zero, each value n occurs A061720(n-1) times. - Antti Karttunen, Oct 19 2019 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 FORMULA From Antti Karttunen, Oct 19 2019: (Start) a(n) = A061395(A276086(n)). For all n >= 0, a(n) >= A267263(n). For all n >= 1, A000040(a(n)) > A328114(n). (End) PROG (Haskell) a235224 n = length \$ takeWhile (<= n) a002110_list (PARI) A235224(n) = { my(s=0, p=2); while(n, s++; n = n\p; p = nextprime(1+p)); (s); }; \\ Antti Karttunen, Oct 19 2019 (PARI) A235224(n, p=2) = if(!n, n, if(n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 22:47 EDT 2019. Contains 328315 sequences. (Running on oeis4.)