OFFSET
1,3
COMMENTS
a(n) is the number of primes <= n that are quadratic nonresidues modulo 5 minus the number of primes <= n that are quadratic residues modulo 5.
a(n) is positive for 2 <= n <= 10000, but conjecturally infinitely many terms should be negative.
The first negative term occurs at a(2082927221) = -1. - Jianing Song, Nov 08 2019
Please see the comment in A321856 describing "Chebyshev's bias" in the general case.
LINKS
Wikipedia, Chebyshev's bias
FORMULA
a(n) = -Sum_{primes p<=n} Legendre(p,5) = -Sum_{primes p<=n} Kronecker(5,p) = -Sum_{primes p<=n} A080891(p).
EXAMPLE
Pi(5,1)(100) = Pi(5,4)(100) = 5, Pi(5,2)(100) = Pi(5,3)(100) = 7, so a(100) = 7 + 7 - 5 - 5 = 4.
PROG
(PARI) a(n) = -sum(i=1, n, isprime(i)*kronecker(5, i))
CROSSREFS
Cf. A080891.
Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), this sequence (d=5), A071838 (d=8), A321858 (d=12).
KEYWORD
sign
AUTHOR
Jianing Song, Nov 20 2018
EXTENSIONS
Edited by Peter Munn, Nov 18 2023
STATUS
approved