login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066520
Number of primes of the form 4m+3 <= n minus number of primes of the form 4m+1 <= n.
31
0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 2
OFFSET
1,11
COMMENTS
Although the initial terms are nonnegative, it has been proved that infinitely many terms are negative. The first two are a(26861)=a(26862)=-1. Next there are 3404 values of n in the range 616841 to 633798 with a(n)<0. Then 27218 values in the range 12306137 to 12382326.
Partial sums of A151763. - Reinhard Zumkeller, Feb 06 2014
LINKS
T. D. Noe, Table of n, a(n) for n=1..30000 (enough terms to show the first dip into negative territory)
Carter Bays and Richard H. Hudson, Zeros of Dirichlet L-Functions and Irregularities in the Distribution of Primes, Mathematics of Computation, 69 (2000) 861-866.
A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
FORMULA
a(n) = A066490(n) - A066339(n).
a(2*n+1) = a(2*n+2) = -A156749(n). - Jonathan Sondow, May 17 2013
MATHEMATICA
a[n_] := Length[Select[Range[3, n, 4], PrimeQ]]-Length[Select[Range[1, n, 4], PrimeQ]]
f[n_]:=Module[{c=Mod[n, 4]}, Which[!PrimeQ[n], 0, c==3, 1, c==1, -1]]; Join[{0, 0}, Accumulate[Array[f, 110, 3]]] (* Harvey P. Dale, Mar 03 2013 *)
PROG
(Haskell)
a066520 n = a066520_list !! (n-1)
a066520_list = scanl1 (+) $ map (negate . a151763) [1..]
-- Reinhard Zumkeller, Feb 06 2014
CROSSREFS
Cf. A156749 Sequence showing Chebyshev bias in prime races (mod 4). [From Daniel Forgues, Mar 26 2009]
Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), this sequence (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).
Sequence in context: A051031 A181059 A111915 * A088526 A334091 A054535
KEYWORD
sign,easy,nice,look
AUTHOR
Sharon Sela (sharonsela(AT)hotmail.com), Jan 05 2002
EXTENSIONS
Edited by Dean Hickerson, Mar 05 2002
STATUS
approved