login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151763
If n is a prime == 1 mod 4 then a(n) = 1, if n is a prime == 3 mod 4 then a(n) = -1, otherwise a(n) = 0.
10
0, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0
OFFSET
1,1
COMMENTS
a(A002145(n)) = -1; a(A065090(n)) = 0; a(A002144(n)) = 1. [Reinhard Zumkeller, Oct 06 2011]
LINKS
N. Katz, Lang-Trotter revisited, Bull. Amer. Math. Soc., 46 (2009), 413-457.
FORMULA
a(n) = (2 - n mod 4) * A010051(n).
MAPLE
a:= proc(n) if n::odd and isprime(n) then 2 - (n mod 4) else 0 fi end proc:
seq(a(n), n=1..100); # Robert Israel, Aug 22 2014
MATHEMATICA
a[n_] := Which[!PrimeQ[n], 0, m = Mod[n, 4]; m == 1, 1, m == 3, -1, True, 0]; Array[a, 105] (* Jean-François Alcover, Dec 03 2016 *)
PROG
(Haskell)
a151763 n | even n = 0
| a010051 n == 1 = 2 - n `mod` 4
| otherwise = 0
-- Reinhard Zumkeller, Oct 06 2011
CROSSREFS
Cf. A066520 (partial sums).
Sequence in context: A164292 A337802 A257531 * A353558 A353638 A324908
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jun 22 2009
STATUS
approved