login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321858
a(n) = Pi(12,5)(n) + Pi(12,7)(n) - Pi(12,1)(n) - Pi(12,11)(n) where Pi(a,b)(x) denotes the number of primes in the arithmetic progression a*k + b less than or equal to x.
14
0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1
OFFSET
1,7
COMMENTS
a(n) is the number of odd primes <= n that have 3 as a quadratic nonresidue minus the number of primes <= n that have 3 as a quadratic residue.
The first 10000 terms are nonnegative. a(p) = 0 for primes p = 2, 3, 13, 433, 443, 457, 479, 491, 503, 3541, ... The earliest negative term is a(61463) = -1. Conjecturally infinitely many terms should be negative.
In general, assuming the strong form of the Riemann Hypothesis, if 0 < a, b < k are integers, gcd(a, k) = gcd(b, k) = 1, a is a quadratic residue and b is a quadratic nonresidue mod k, then Pi(k,b)(n) > Pi(k,a)(n) occurs more often than not. This phenomenon is called "Chebyshev's bias". (See Wikipedia link and especially the links in A007350.) [Edited by Peter Munn, Nov 19 2023]
Here, although 11 is not a quadratic residue modulo 12, for most n we have Pi(12,7)(n) + Pi(12,11)(n) > Pi(12,1)(n) - Pi(12,5)(n), Pi(12,5)(n) + Pi(12,11)(n) > Pi(12,1)(n) + Pi(12,7)(n) and Pi(12,5)(n) + Pi(12,7)(n) > Pi(12,1)(n) + Pi(12,11)(n).
LINKS
Andrew Granville and Greg Martin, Prime number races, Amer. Math. Monthly, 113 (No. 1, 2006), 1-33.
Wikipedia, Chebyshev's bias
FORMULA
a(n) = -Sum_{primes p<=n} Kronecker(12,p) = -Sum_{primes p<=n} A110161(p).
EXAMPLE
Pi(12,1)(100) = 5, Pi(12,5)(100) = Pi(12,7)(100) = Pi(12,11)(100) = 6, so a(100) = 6 + 6 - 5 - 6 = 1.
PROG
(PARI) a(n) = -sum(i=1, n, isprime(i)*kronecker(12, i))
CROSSREFS
Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), this sequence (d=12).
Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).
Sequence in context: A174344 A340171 A049241 * A334235 A230415 A101080
KEYWORD
sign
AUTHOR
Jianing Song, Nov 20 2018
STATUS
approved