login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321855
Number of permutations f of {1,...,n} such that prime(k)*prime(f(k)) - 2 is prime for every k = 1,...,n.
1
1, 1, 2, 3, 5, 12, 2, 3, 65, 248, 448, 1792, 4288, 6468, 27068, 29752, 106066, 447982, 1250762, 6304196, 46613084, 126391780, 504582496, 2270372946, 3028652541, 8941959118, 36442298864, 175008626450, 318369805106, 1974700703920, 6654020288821, 48819526290634, 150577775767875, 574885284627624, 3058310882340228, 15949743649457780
OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 for all n > 0. Moreover, for each n > 0, there is an even permutation f of {1,...,n} with prime(k)*prime(f(k)) - 2 prime for all k = 1,...,n. Also, for any integer n > 2, there is an odd permutation f of {1,...,n} with prime(k)*prime(f(k)) - 2 prime for all k = 1,...,n.
If we let b(n) denote the number of even permutations f of {1,...,n} with prime(k)*prime(f(k)) - 2 prime for all k = 1,...,n, then (b(1),...,b(11)) = (1,1,1,1,3,6,1,1,33,125,226).
In 1973 J.-R. Chen proved that there are infinitely many primes p with p + 2 a product of at most two primes, such primes p are now called Chen primes.
LINKS
Zhi-Wei Sun, Chen primes and permutations, Question 315679 on Mathoverflow, Nov. 19, 2018.
Zhi-Wei Sun, On permutations of {1, ..., n} and related topics, arXiv:1811.10503 [math.CO], 2018.
EXAMPLE
a(7) = 2. The only even permutation of {1,...,7} meeting the requirement is (1,5,7,4,2,6,3) with prime(1)*prime(1) - 2 = 2, prime(2)*prime(5) - 2 = 31, prime(3)*prime(7) - 2 = 83, prime(4)*prime(4) - 2 = 47, prime(5)*prime(2) - 2 = 31, prime(6)*prime(6) - 2 = 167 and prime(7)*prime(3) - 2 = 83 all prime. Also, the only odd permutation of {1,...,7} meeting the requirement is (1,5,7,6,2,4,3) with prime(1)*prime(1) - 2 = 2, prime(2)*prime(5) - 2 = 31, prime(3)*prime(7) - 2 = 83, prime(4)*prime(6) - 2 = 89, prime(5)*prime(2) - 2 = 31, prime(6)*prime(4) - 2 = 89 and prime(7)*prime(3) - 2 = 83 all prime.
MATHEMATICA
Permanent[m_List]:=With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m.v), Times @@ v]];
a[n_]:=a[n]=Permanent[Table[Boole[PrimeQ[Prime[i]*Prime[j]-2]], {i, 1, n}, {j, 1, n}]];
Do[Print[n, " ", a[n]], {n, 1, 27}]
PROG
(PARI) a(n) = matpermanent(matrix(n, n, i, j, ispseudoprime(prime(i)*prime(j) - 2))); \\ Jinyuan Wang, Jun 13 2020
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 19 2018
EXTENSIONS
a(28)-a(29) from Jinyuan Wang, Jun 13 2020
a(30)-a(36) from Vaclav Kotesovec, Aug 20 2021
STATUS
approved