|
|
A242995
|
|
a(n) = a(n-1)^2 + a(n-1)*a(n-2)^2 - a(n-2)^4 with a(1) = 2, a(2) = 3.
|
|
3
|
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
0 = a(n)^2*(a(n+1) - a(n)^2) - (a(n+2) - a(n+1)^2) for all n>0.
abs(a(n)) = abs(A127814(n)) for all n>0.
|
|
MATHEMATICA
|
RecurrenceTable[{a[n] == a[n-1]^2 + a[n-1]*a[n-2]^2 - a[n-2]^4, a[1] == 2, a[2] == 3}, a, {n, 1, 10}] (* G. C. Greubel, Aug 05 2018 *)
|
|
PROG
|
(PARI) {a(n) = if( n<1, 0, if( n<3, n+1, my(x = a(n-2)^2, y = a(n-1)); y^2 + x*y - x^2))};
(Magma) I:=[2, 3]; [n le 2 select I[n] else Self(n-1)^2 + Self(n-1)*Self(n-2)^2 - Self(n-2)^4: n in [1..10]]; // G. C. Greubel, Aug 05 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|