The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242998 Number of integers k such that R = (2^k*Q - Q - 1)/(Q + 1 - 2^k) is a prime number, when Q = A000668(n) is the n-th Mersenne prime. 7
 0, 1, 1, 2, 1, 1, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Related to the search of large primitive weird numbers: Kravitz has shown that 2^(k-1)*Q*R is a primitive weird number (cf. A002975) when Q > 2^k and R = (2^k*Q - Q - 1)/(Q + 1 - 2^k) both are prime. Here we count such primes for the special case where Q = 2^p - 1 is a Mersenne prime, p=A000043(n). For such Q one has R = 2^k - 1 + (2^k - 2)/(2^(p-k) - 1). See A242025 for the resulting primes R, which however are there not listed in order of the p's. This sequence gives the row lengths for the table A243003 whose rows hold the k-values leading to prime R, for a given Mersenne prime. LINKS S. Kravitz, A search for large weird numbers. J. Recreational Math. 9(1976), 82-85 (1977). Zbl 0365.10003 E. Weisstein, Weird numbers, on MathWorld - a Wolfram web ressource. EXAMPLE For given p=A000043(n), the following k's yield a prime R: p : k's (and resulting primes R, Q=2^p-1 and/or weird W=2^(k-1)*Q*R) 2 : - 3 : 2 (R=5, Q=7, W=70) 5 : 4 (R=29, Q=31, W=7192) 7 : 4 (R=17, Q=127, W=17272), 5 (R=41, Q=127, W=83312) 13 : 11 (R=2729, Q=8191, W=22889716736) 17 : 13 (R=8737, Q=131071, W=4690605371392) 19 : 16 (R=74897, W=1286718208049152), 17 (R=174761, W=6004730783793152) 31 : 16 (R=65537, W=2^15*(2^31-1)*R), 29 (R=715827881, W=2^28*(2^31-1)*R) 61 : 57 (R=153722867280912929, W=2^56*(2^61-1)*R) 89 : 78 (R=302379100949042568368129, W=2^77*(2^89-1)*R) 107 through 86243 : none. 107 through 3021377: none. Robert Price, Sep 05 2019 The present sequence lists the number of k's in each line. MATHEMATICA A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607,    1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,    21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433,    1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011,    24036583, 25964951, 30402457, 32582657, 37156667, 42643801,    43112609}; lst = {}; For[i = 1, i <= 28, i++,   p = A000043[[i]];   kc = 0;   For[k = 1, k < p, k++,    r = 2^k - 1 + (2^k - 2)/(2^(p - k) - 1);    If[! IntegerQ[r], Continue[]];    If[PrimeQ[r], kc++]];   AppendTo[lst, kc]]; lst (* Robert Price, Sep 05 2019 *) PROG (PARI) A242998(n, p=A000043[n])={sum(k=p\2+1, p-1, Mod(2, 2^(p-k)-1)^k==2 && ispseudoprime(2^k-1+(2^k-2)/(2^(p-k)-1)))} CROSSREFS Cf. A258882 (PWN of the form 2^k*p*q), A000043 (Mersenne prime exponents), A000668. Cf. A242025 (the primes R). Row lengths of A242999 (values of p) and A243003 (values of k), cf. A242993 for the smallest possible k. See also A320875 for more general solutions to R = (MQ-1)/(Q-M) = prime. Sequence in context: A284593 A190672 A327910 * A140885 A064286 A002471 Adjacent sequences:  A242995 A242996 A242997 * A242999 A243000 A243001 KEYWORD nonn,hard,more AUTHOR M. F. Hasler, Aug 17 2014 EXTENSIONS Typo in definition corrected by Jens Kruse Andersen, Aug 27 2014 a(29)-a(37) from Robert Price, Sep 05 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 30 03:34 EDT 2022. Contains 354913 sequences. (Running on oeis4.)