|
|
A242996
|
|
a(n) = (a(n-1)^2 - a(n-2)^4) * a(n-1) / a(n-2)^2 with a(1) = 1, a(2) = 2.
|
|
2
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The next term (a(10)) has 90 digits and a(11) has 178 digits. - Harvey P. Dale, Feb 23 2023
|
|
LINKS
|
|
|
FORMULA
|
a(n+1) = a(n) * A242995(n) for all n>0.
0 = a(n)^2*a(n+2) + a(n+1)*(a(n)^4 - a(n+1)^2) for all n>0.
|
|
MATHEMATICA
|
RecurrenceTable[{a[n] == (a[n-1]^2 - a[n-2]^4)*a[n-1]/a[n-2]^2, a[1] == 1, a[2] == 2}, a, {n, 1, 10}] (* G. C. Greubel, Aug 06 2018; corrected by Georg Fischer, Dec 07 2023 *)
nxt[{a_, b_}]:={b, (b^2-a^4) b/a^2}; NestList[nxt, {1, 2}, 10][[;; , 1]] (* Harvey P. Dale, Feb 23 2023 *)
|
|
PROG
|
(PARI) {a(n) = if( n<3, max(0, n), my(x = a(n-2)^2, y = a(n-1)); (y^2 - x^2) * y / x)};
(Magma) I:=[1, 2]; [n le 2 select I[n] else (Self(n-1)^2 - Self(n-2)^2 )/Self(n-2)^2: n in [1..10]]; // G. C. Greubel, Aug 06 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|