login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333373
a(n) = n + 1 for n <= 1; thereafter a(n) = a(n-1) * prime(gpf(a(n-1))).
0
1, 2, 6, 30, 330, 10230, 1299210, 921139890, 4956653748090, 261270175715571990, 169405230502395438168090, 1649555141343581679123602303970, 287748466487735183193170029972221262770, 1052440045241486547790272887133572295775622539770
OFFSET
0,2
COMMENTS
For n > 1, a(n) belongs to A083207 (see "product" formula below and my Jan 16 2020 comment in A083207). - Ivan N. Ianakiev, Mar 17 2020
FORMULA
a(n) = Product_{k=0..n} A007097(k).
A156061(a(n+1)) = a(n).
A052126(a(n+1)) = a(n).
EXAMPLE
a(7) = a(6) * prime(gpf(a(6))) = prime(1) * prime(2) * prime(3) * prime(5) * prime(11) * prime(31) * prime(127) = 2 * 3 * 5 * 11 * 31 * 127 * 709 = 921139890.
MATHEMATICA
a[0] = 1; a[n_] := a[n] = a[n - 1] Prime[FactorInteger[a[n - 1]][[-1, 1]]]; Table[a[n], {n, 0, 13}]
Table[Times @@ NestList[Prime@# &, 1, n], {n, 0, 13}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 17 2020
STATUS
approved