login
A333374
G.f.: Sum_{k>=1} (x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)/(1 - x^j)).
4
1, 0, 1, 2, 2, 2, 3, 4, 6, 8, 10, 12, 15, 18, 22, 28, 34, 42, 52, 62, 75, 90, 106, 126, 150, 176, 208, 246, 288, 338, 397, 462, 538, 626, 724, 838, 968, 1114, 1282, 1474, 1690, 1936, 2217, 2532, 2890, 3296, 3750, 4264, 4844, 5492, 6222, 7042, 7958, 8986, 10138
OFFSET
0,4
LINKS
FORMULA
Limit_{n->infinity} A066447(n) / a(n) = A058265 = (1 + (19+3*sqrt(33))^(1/3) + (19-3*sqrt(33))^(1/3))/3 = 1.839286755214... (the tribonacci constant).
Compare with: A306734(n) / A333179(n) -> A060006 (the plastic constant) and A003114(n) / A003106(n) -> A001622 (golden ratio).
a(n) ~ c * d^sqrt(n) / n^(3/4), where d = A376841 = 7.1578741786143524880205... = exp(2*sqrt(log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))) and c = 0.10511708841962944170826735560432... = (log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))^(1/4) * sqrt(1/24 - sinh(arcsinh(sqrt(11)/4)/3) / (12*sqrt(11))) / sqrt(Pi), where r = A192918 = 0.54368901269207636157... is the real root of the equation r^2*(1+r) = 1-r. - Vaclav Kotesovec, Mar 17 2020, updated Oct 10 2024
MATHEMATICA
nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1))*Product[(1+x^k)/(1-x^k), {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
nmax = 100; p = 1; s = 1; Do[p = Normal[Series[p*(1 + x^k)/(1 - x^k)*x^(2*k), {x, 0, nmax}]]; s += p; , {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 17 2020
STATUS
approved