OFFSET
0,7
COMMENTS
Number of partitions of n such that each part occurs at most twice and if k occurs as a part then all smaller positive integers occur.
Strictly unimodal compositions with rising range 1, 2, 3, ..., m where m is the largest part and distinct parts in the falling range (this follows trivially from the comment above). [Joerg Arndt, Mar 26 2014]
REFERENCES
Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 19, 21, 22.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 293 (1986) 113-134.
George E. Andrews and Frank G. Garvan, Ramanujan's "lost" notebook VI: The mock theta conjectures, Advances in Mathematics, 73 (1989) 242-255.
William J. Keith, Partitions into parts simultaneously regular, distinct, and/or flat, Proceedings of CANT 2016; arXiv:1911.04755 [math.CO], 2019. Mentions this sequence.
George N. Watson, The mock theta functions (2), Proc. London Math. Soc., series 2, 42 (1937) 274-304.
FORMULA
G.f.: psi_1(q) = Sum_{n>=0} q^(n*(n+1)/2) * Product_{k=1..n} (1 + q^k).
a(n) ~ sqrt(phi) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+1), j=1..min(2, n/i))))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..100); # Alois P. Heinz, Mar 26 2014
MATHEMATICA
Series[Sum[q^(n(n+1)/2) Product[1+q^k, {k, 1, n}], {n, 0, 13}], {q, 0, 100}]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > n, 0, Sum[b[n - i*j, i + 1], {j, 1, Min[2, n/i]}]]];
a[n_] := b[n, 1];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 09 2018, after Alois P. Heinz *)
nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1)/2) * Product[1+x^j, {j, 1, k}], {k, 0, Floor[Sqrt[2*nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)
PROG
(PARI) N = 66; x = 'x + O('x^N); gf = sum(n=0, N, x^(n*(n+1)/2) * prod(k=1, n, 1+x^k) ); v = Vec(gf) /* Joerg Arndt, Apr 21 2013 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Dean Hickerson, Dec 19 1999
STATUS
approved