login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053261
Coefficients of the '5th-order' mock theta function psi_1(q).
21
1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 11, 11, 12, 13, 13, 14, 15, 16, 16, 17, 18, 19, 20, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 34, 35, 37, 39, 40, 41, 44, 45, 47, 50, 51, 53, 56, 58, 60, 63, 65
OFFSET
0,7
COMMENTS
Number of partitions of n such that each part occurs at most twice and if k occurs as a part then all smaller positive integers occur.
Strictly unimodal compositions with rising range 1, 2, 3, ..., m where m is the largest part and distinct parts in the falling range (this follows trivially from the comment above). [Joerg Arndt, Mar 26 2014]
REFERENCES
Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 19, 21, 22.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 293 (1986) 113-134.
George E. Andrews and Frank G. Garvan, Ramanujan's "lost" notebook VI: The mock theta conjectures, Advances in Mathematics, 73 (1989) 242-255.
William J. Keith, Partitions into parts simultaneously regular, distinct, and/or flat, Proceedings of CANT 2016; arXiv:1911.04755 [math.CO], 2019. Mentions this sequence.
George N. Watson, The mock theta functions (2), Proc. London Math. Soc., series 2, 42 (1937) 274-304.
FORMULA
G.f.: psi_1(q) = Sum_{n>=0} q^(n*(n+1)/2) * Product_{k=1..n} (1 + q^k).
a(n) ~ sqrt(phi) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, add(b(n-i*j, i+1), j=1..min(2, n/i))))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..100); # Alois P. Heinz, Mar 26 2014
MATHEMATICA
Series[Sum[q^(n(n+1)/2) Product[1+q^k, {k, 1, n}], {n, 0, 13}], {q, 0, 100}]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > n, 0, Sum[b[n - i*j, i + 1], {j, 1, Min[2, n/i]}]]];
a[n_] := b[n, 1];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 09 2018, after Alois P. Heinz *)
nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1)/2) * Product[1+x^j, {j, 1, k}], {k, 0, Floor[Sqrt[2*nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)
PROG
(PARI) N = 66; x = 'x + O('x^N); gf = sum(n=0, N, x^(n*(n+1)/2) * prod(k=1, n, 1+x^k) ); v = Vec(gf) /* Joerg Arndt, Apr 21 2013 */
CROSSREFS
Other '5th-order' mock theta functions are at A053256, A053257, A053258, A053259, A053260, A053262, A053263, A053264, A053265, A053266, A053267.
Sequence in context: A165640 A082892 A025839 * A123584 A291983 A112689
KEYWORD
nonn,easy
AUTHOR
Dean Hickerson, Dec 19 1999
STATUS
approved