OFFSET
0,9
REFERENCES
Dean Hickerson, A proof of the mock theta conjectures, Inventiones Mathematicae, 94 (1988) 639-660
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 18, 20
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
George E. Andrews and Frank G. Garvan, Ramanujan's "lost" notebook VI: The mock theta conjectures, Advances in Mathematics, 73 (1989) 242-255.
FORMULA
G.f.: Psi(q) = -1 + Sum_{n>=0} q^(5n^2)/((1-q^2)(1-q^3)(1-q^7)(1-q^8)...(1-q^(5n+2))).
a(n) ~ exp(Pi*sqrt(2*n/15)) / (5^(3/4)*sqrt(2*phi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019
MATHEMATICA
Series[Sum[q^(5n^2)/Product[1-q^Abs[5k+2], {k, -n, n}], {n, 0, 4}], {q, 0, 100}]-1
nmax = 100; CoefficientList[Series[-1 + Sum[x^(5*k^2)/ Product[1-x^Abs[5*j+2], {j, -k, k}], {k, 0, Floor[Sqrt[nmax/5]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Dean Hickerson, Dec 19 1999
STATUS
approved