OFFSET
0,11
COMMENTS
In Ramanujan's lost notebook page 21 is written the g.f. neatly crossed out between the 3rd and 4th equations. - Michael Somos, Feb 13 2017
REFERENCES
Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 19, 21, 22, 23.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 293 (1986) 113-134.
George E. Andrews and Frank G. Garvan, Ramanujan's "lost" notebook VI: The mock theta conjectures, Advances in Mathematics, 73 (1989) 242-255.
Dean Hickerson, A proof of the mock theta conjectures, Inventiones Mathematicae, 94 (1988) 639-660.
George N. Watson, The mock theta functions (2), Proc. London Math. Soc., series 2, 42 (1937) 274-304.
FORMULA
G.f.: 1 + Sum_{k>0} q^k^2 / ((1 + q) * (1 + q^2) * ... * (1 + q^k)).
Consider partitions of n into parts differing by at least 2. For n > 0: a(n) is the number of them with largest part odd minus number with largest part even.
a(n) ~ -(-1)^n * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(phi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 15 2019
EXAMPLE
G.f. = 1 + x - x^2 + x^3 - x^6 + x^7 + x^9 - 2*x^10 + x^11 - x^12 + 2*x^13 - ...
MAPLE
N:= 100: # for a(0)..a(N)
g:= add(q^(k^2)/mul(1+q^i, i=1..k), k=0..floor(sqrt(N))):
S:= series(g, q, N+1):
seq(coeff(S, q, k), k=0..N)]; # Robert Israel, Mar 27 2018
MATHEMATICA
Series[Sum[q^n^2/Product[1+q^k, {k, 1, n}], {n, 0, 10}], {q, 0, 100}]
a[ n_] := SeriesCoefficient[ Sum[ x^k^2 / QPochhammer[ -x, x, k] // FunctionExpand, {k, 0, Sqrt@ n}], {x, 0, n}]; (* Michael Somos, Feb 13 2017 *)
PROG
(PARI) {a(n) = my(t); if( n<0, 0, t = 1 + O(x^n); polcoeff( sum( k=1, sqrtint(n), t *= x^(2*k-1) / (1 + x^k + O(x^(n - (k-1)^2 + 1))), 1), n))}; /* Michael Somos, Mar 12 2006 */
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Dean Hickerson, Dec 19 1999
STATUS
approved