login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308620
Number of states in the evolutionary spatial prisoner's dilemma with n players.
1
2, 2, 2, 3, 4, 6, 9, 13, 19, 28, 42, 63, 95, 143, 216, 327, 496, 754, 1147, 1747, 2662, 4059, 6192, 9450, 14428, 22034, 33658, 51422, 78573, 120073, 183510, 280485, 428733, 655371, 1001854, 1531567, 2341417, 3579571, 5472565, 8366756
OFFSET
1,1
COMMENTS
Conjecture: satisfies a linear recurrence having signature (2, 0, -2, 1, 2, -2, 0, 0, 0, -1). - Harvey P. Dale, Aug 21 2021
LINKS
Burger, A. P. ; Van Der Merwe, M.; Van Vuuren, J. H. An asymptotic analysis of the evolutionary spatial prisoner’s dilemma on a path, Discrete Appl. Math. 160, No. 15, 2075-2088 (2012) Table 4.2
FORMULA
Conjecture: g.f. 2*x -x^2*(-2 +2*x +x^2 -2*x^3 +3*x^5 +x^7 +x^9)/ (x^5+x^2-1)/ (x^5-x^2+2*x-1) .
MAPLE
A308620 := proc(n)
add( binomial(n-3*i+2, 2*i-2) +binomial(floor((n-5*i+4)/2)+i-1, i-1), i=1..floor((n+4)/5)) ;
%+add(binomial(n-3*i-2, 2*i)+binomial(floor((n-5*i-2)/2)+i, i), i=1..floor((n-2)/5)) ;
%/2+1 ;
%+add(binomial(n-3*i, 2*i-1), i=1..floor((n+1)/5)) ;
end proc:
seq(A308620(n), n=1..40) ;
CROSSREFS
Sequence in context: A333374 A098523 A350514 * A339711 A048185 A368520
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jun 11 2019
STATUS
approved