login
A098523
Expansion of (1+x^2)/(1-x-x^5) = (1+x^2)/((1-x+x^2)*(1-x^2-x^3)).
3
1, 1, 2, 2, 2, 3, 4, 6, 8, 10, 13, 17, 23, 31, 41, 54, 71, 94, 125, 166, 220, 291, 385, 510, 676, 896, 1187, 1572, 2082, 2758, 3654, 4841, 6413, 8495, 11253, 14907, 19748, 26161, 34656, 45909, 60816, 80564, 106725, 141381, 187290, 248106
OFFSET
0,3
COMMENTS
The expansion of (1+kx^2)/(1-x-k^2*x^5) satisfies the recurrence a(n)=a(n-1)+k^2*a(n-5),a(0)=1,a(1)=1,a(2)=k+1,a(3)=k+1,a(4)=k+1, with a(n)=sum{k=0..floor(n/2), binomial(n-2k,floor(k/2))r^k}.
FORMULA
a(n)=a(n-1)+a(n-5); a(n)=sum{k=0..floor(n/2), binomial(n-2k, floor(k/2))}.
7*a(n) = 8*A182097(n) +5*A182097(n-1) +3*A182097(n-2) - A010892(n) +3*A010892(n-1). - R. J. Mathar, Jul 07 2023
MATHEMATICA
CoefficientList[Series[(1+x^2)/(1-x-x^5), {x, 0, 50}], x] (* or *) LinearRecurrence[ {1, 0, 0, 0, 1}, {1, 1, 2, 2, 2}, 50] (* Harvey P. Dale, Mar 05 2014 *)
CROSSREFS
Cf. A097333.
Sequence in context: A132427 A176975 A333374 * A350514 A308620 A339711
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 12 2004
STATUS
approved