OFFSET
0,4
COMMENTS
Binomial transform of e.g.f. BesselI(2,2*sqrt(3)x)/3, or {0,0,1,0,12,0,135,0,1512,0,17010,...} with g.f. ((1-6x^2)-sqrt(1-12x^2))/(18x^2*sqrt(1-12x^2)).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
FORMULA
G.f.: (1-2*x-5*x^2-(1-x)*sqrt(1-2*x-11*x^2))/(18*x^2*sqrt(1-2*x-11*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k+2)*3^k.
D-finite with recurrence: (n-2)*(n+2)*a(n) - n*(2n-1)*a(n-1) - 11n*(n-1)*a(n-2) = 0. - R. J. Mathar, Dec 11 2011
a(n) ~ sqrt(18+3*sqrt(3))*(1+2*sqrt(3))^n/(18*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
MATHEMATICA
Table[SeriesCoefficient[(1-2*x-5*x^2-(1-x)*Sqrt[1-2*x-11*x^2])/(18*x^2*Sqrt[1-2*x-11*x^2]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)
PROG
(PARI) x='x+O('x^66); concat([0, 0], Vec((1-2*x-5*x^2-(1-x)*sqrt(1-2*x-11*x^2))/(18*x^2*sqrt(1-2*x-11*x^2)))) \\ Joerg Arndt, May 12 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 12 2004
STATUS
approved