login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098519 E.g.f. exp(x)*BesselI(1,2*sqrt(3)*x)/sqrt(3). 2
0, 1, 2, 12, 40, 185, 726, 3157, 13112, 56331, 239230, 1028522, 4414224, 19045039, 82237442, 356104140, 1544056864, 6707220443, 29172892518, 127058629852, 554006070200, 2418204764451, 10565384173762, 46202462762837, 202207635999240, 885642000534925, 3881697614968706 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Binomial transform of e.g.f. BesselI(1,2sqrt(3)x)/sqrt(3), or {0,1,0,9,0,90,0,945,0,10206,0,...} with g.f. 2x/(1-12x^2+sqrt(1-12x^2)). The binomial transform of e.g.f. BesselI(1,2sqrt(r)x)/sqrt(r) with g.f. 2x/(1-(2sqrt(r)x)^2+sqrt(1-(2sqrt(r)x)^2)) has g.f. 2x/(1-2x-((2sqrt(r))^2-1)x^2+(1-x)sqrt(1-2x-((2sqrt(r))^2-1)x^2)).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

FORMULA

G.f.: 2*x/(1-2*x-11*x^2+(1-x)*sqrt(1-2*x-11*x^2)).

a(n) = sum{k=0..floor(n/2), binomial(n, k)*binomial(n-k, k+1)*3^k}.

Conjecture: (n-1)*(n+1)*a(n) -n*(2*n-1)*a(n-1) -11*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 23 2011

a(n) ~ sqrt(6+sqrt(3))*(1+2*sqrt(3))^n/(6*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012

MATHEMATICA

Table[SeriesCoefficient[2*x/(1-2*x-11*x^2+(1-x)*Sqrt[1-2*x-11*x^2]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)

With[{nn=30}, CoefficientList[Series[Exp[x] BesselI[1, 2x Sqrt[3]]/Sqrt[3], {x, 0, nn}], x] Range[0, nn]!]//Simplify (* Harvey P. Dale, Apr 27 2016 *)

PROG

(PARI) x='x+O('x^66); concat([0], Vec(2*x/(1-2*x-11*x^2+(1-x)*sqrt(1-2*x-11*x^2)))) \\ Joerg Arndt, May 11 2013

CROSSREFS

Sequence in context: A110953 A003683 A188572 * A127725 A280174 A185619

Adjacent sequences:  A098516 A098517 A098518 * A098520 A098521 A098522

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 12 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 07:59 EDT 2021. Contains 343084 sequences. (Running on oeis4.)