login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098519
E.g.f. exp(x)*BesselI(1,2*sqrt(3)*x)/sqrt(3).
2
0, 1, 2, 12, 40, 185, 726, 3157, 13112, 56331, 239230, 1028522, 4414224, 19045039, 82237442, 356104140, 1544056864, 6707220443, 29172892518, 127058629852, 554006070200, 2418204764451, 10565384173762, 46202462762837, 202207635999240, 885642000534925, 3881697614968706
OFFSET
0,3
COMMENTS
Binomial transform of e.g.f. BesselI(1,2*sqrt(3)x)/sqrt(3), or {0,1,0,9,0,90,0,945,0,10206,0,...} with g.f. 2x/(1-12x^2+sqrt(1-12x^2)). The binomial transform of e.g.f. BesselI(1,2*sqrt(r)x)/sqrt(r) with g.f. 2x/(1-(2*sqrt(r)x)^2+sqrt(1-(2*sqrt(r)x)^2)) has g.f. 2x/(1-2x-((2*sqrt(r))^2-1)x^2+(1-x)*sqrt(1-2x-((2*sqrt(r))^2-1)x^2)).
LINKS
FORMULA
G.f.: 2*x/(1-2*x-11*x^2+(1-x)*sqrt(1-2*x-11*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k+1)*3^k.
Conjecture: (n-1)*(n+1)*a(n) - n*(2*n-1)*a(n-1) - 11*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 23 2011
a(n) ~ sqrt(6+sqrt(3))*(1+2*sqrt(3))^n/(6*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
MATHEMATICA
Table[SeriesCoefficient[2*x/(1-2*x-11*x^2+(1-x)*Sqrt[1-2*x-11*x^2]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)
With[{nn=30}, CoefficientList[Series[Exp[x] BesselI[1, 2x Sqrt[3]]/Sqrt[3], {x, 0, nn}], x] Range[0, nn]!]//Simplify (* Harvey P. Dale, Apr 27 2016 *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec(2*x/(1-2*x-11*x^2+(1-x)*sqrt(1-2*x-11*x^2)))) \\ Joerg Arndt, May 11 2013
CROSSREFS
Sequence in context: A110953 A003683 A188572 * A127725 A371357 A280174
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 12 2004
STATUS
approved