login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188572
a(n) = coefficient of sqrt(3) in the expansion of (1 + sqrt(2) + sqrt(3))^n sequence.
4
0, 1, 2, 12, 40, 184, 720, 3072, 12544, 52416, 216448, 899328, 3724800, 15452672, 64052224, 265617408, 1101234176, 4566192128, 18932244480, 78498938880, 325475532800, 1349511512064, 5595423113216, 23200121487360, 96193798471680, 398845002121216
OFFSET
0,3
COMMENTS
From Clark Kimberling, Oct 23 2024: (Start)
Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 6 primes, with respective period lengths 6,8,5,4,4,8 and these periods:
p = 2: (3, 3, 1, 2, 2, 1)
p = 3: (4, 2, 6, 6, 1, 1, 3, 1)
p = 5: (20, 20, 9, 10, 1)
p = 7: (18, 1, 16, 1)
p = 11: (32, 1, 30, 1)
p = 13: (28, 14, 1, 10, 3, 17, 10, 1)
See A377109 for a guide to related sequences. (End)
Cf. A377109.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
FORMULA
Conjectures from R. J. Mathar, Jan 09 2013: (Start)
a(n) = +4*a(n-1) +4*a(n-2) -16*a(n-3) +8*a(n-4).
G.f.: x*(-1+2*x)/( -1+4*x+4*x^2-16*x^3+8*x^4 ). (End)
EXAMPLE
a(3) = 12 because (1+sqrt(2)+sqrt(3))^3 = 16 + 14*sqrt(2) + 12*sqrt(3) + 6*sqrt(6).
MATHEMATICA
a[n_] := Sum[Sum[3^(Floor[(n - 1)/2] - k - j) 2^j Multinomial[2 Floor[(n - 1)/2] + 1 - 2 j - 2 k, 2 j, 2 k + 1 - n + 2 Floor[n/2]], {j, 0, Floor[(n - 1)/2] - k + 1}], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
a[n_] := Coefficient[ Expand[(1 + Sqrt[2] + Sqrt[3])^n], Sqrt[3]] /. Sqrt[2] -> 0; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 08 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Mateusz Szymański, Dec 28 2012
EXTENSIONS
Edited by Clark Kimberling, Oct 20 2024
STATUS
approved