login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188575
Number of non-complete compositions of n.
6
0, 1, 1, 4, 8, 14, 31, 63, 129, 248, 509, 1011, 2044, 4089, 8167, 16360, 32725, 65482, 131017, 262176, 524167, 1048678, 2096985, 4194358, 8387802, 16776408, 33550943, 67101615, 134199983, 268399122, 536793004, 1073590077, 2147187353, 4294419287, 8588940438
OFFSET
1,4
LINKS
M. Archibald and A. Knopfmacher, The largest missing value in a composition of an integer, Discrete Math., 311 (2011), 723-731.
FORMULA
a(n) = 2^(n-1) - A107429(n) ~ 2^(n-2). - Alois P. Heinz, Dec 06 2014
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(i=0, t!, 0),
`if`(i<1 or n<i, 0, add(b(n-i*j, i-1, t+j)/j!, j=1..n/i)))
end:
a:= n-> 2^(n-1) -add(b(n, i, 0), i=1..n):
seq(a(n), n=1..40); # Alois P. Heinz, Dec 06 2014
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[i == 0, t!, 0], If[i<1 || n<i, 0, Sum[ b[n-i*j, i-1, t+j]/j!, {j, 1, n/i}]]]; a[n_] := 2^(n-1)-Sum[b[n, i, 0], {i, 1, n} ]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 04 2011
EXTENSIONS
More terms from Alois P. Heinz, Dec 06 2014
STATUS
approved