Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 May 18 2020 14:56:17
%S 0,1,1,4,8,14,31,63,129,248,509,1011,2044,4089,8167,16360,32725,65482,
%T 131017,262176,524167,1048678,2096985,4194358,8387802,16776408,
%U 33550943,67101615,134199983,268399122,536793004,1073590077,2147187353,4294419287,8588940438
%N Number of non-complete compositions of n.
%H Alois P. Heinz, <a href="/A188575/b188575.txt">Table of n, a(n) for n = 1..1000</a>
%H M. Archibald and A. Knopfmacher, <a href="https://doi.org/10.1016/j.disc.2011.01.012">The largest missing value in a composition of an integer</a>, Discrete Math., 311 (2011), 723-731.
%H Alois P. Heinz, <a href="/A188575/a188575.jpg">Plot of (a(n)-2^(n-2))/2^(n-2) for n = 60..1000</a>
%F a(n) = 2^(n-1) - A107429(n) ~ 2^(n-2). - _Alois P. Heinz_, Dec 06 2014
%p b:= proc(n, i, t) option remember; `if`(n=0, `if`(i=0, t!, 0),
%p `if`(i<1 or n<i, 0, add(b(n-i*j, i-1, t+j)/j!, j=1..n/i)))
%p end:
%p a:= n-> 2^(n-1) -add(b(n, i, 0), i=1..n):
%p seq(a(n), n=1..40); # _Alois P. Heinz_, Dec 06 2014
%t b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[i == 0, t!, 0], If[i<1 || n<i, 0, Sum[ b[n-i*j, i-1, t+j]/j!, {j, 1, n/i}]]]; a[n_] := 2^(n-1)-Sum[b[n, i, 0], {i, 1, n} ]; Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Mar 09 2015, after _Alois P. Heinz_ *)
%Y Cf. A107429, A188576, A188577, A251729.
%K nonn
%O 1,4
%A _N. J. A. Sloane_, Apr 04 2011
%E More terms from _Alois P. Heinz_, Dec 06 2014