Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 May 23 2021 02:41:55
%S 0,1,2,12,40,185,726,3157,13112,56331,239230,1028522,4414224,19045039,
%T 82237442,356104140,1544056864,6707220443,29172892518,127058629852,
%U 554006070200,2418204764451,10565384173762,46202462762837,202207635999240,885642000534925,3881697614968706
%N E.g.f. exp(x)*BesselI(1,2*sqrt(3)*x)/sqrt(3).
%C Binomial transform of e.g.f. BesselI(1,2*sqrt(3)x)/sqrt(3), or {0,1,0,9,0,90,0,945,0,10206,0,...} with g.f. 2x/(1-12x^2+sqrt(1-12x^2)). The binomial transform of e.g.f. BesselI(1,2*sqrt(r)x)/sqrt(r) with g.f. 2x/(1-(2*sqrt(r)x)^2+sqrt(1-(2*sqrt(r)x)^2)) has g.f. 2x/(1-2x-((2*sqrt(r))^2-1)x^2+(1-x)*sqrt(1-2x-((2*sqrt(r))^2-1)x^2)).
%H Vincenzo Librandi, <a href="/A098519/b098519.txt">Table of n, a(n) for n = 0..300</a>
%F G.f.: 2*x/(1-2*x-11*x^2+(1-x)*sqrt(1-2*x-11*x^2)).
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k+1)*3^k.
%F Conjecture: (n-1)*(n+1)*a(n) - n*(2*n-1)*a(n-1) - 11*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 23 2011
%F a(n) ~ sqrt(6+sqrt(3))*(1+2*sqrt(3))^n/(6*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 15 2012
%t Table[SeriesCoefficient[2*x/(1-2*x-11*x^2+(1-x)*Sqrt[1-2*x-11*x^2]),{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 15 2012 *)
%t With[{nn=30},CoefficientList[Series[Exp[x] BesselI[1,2x Sqrt[3]]/Sqrt[3],{x,0,nn}],x] Range[0,nn]!]//Simplify (* _Harvey P. Dale_, Apr 27 2016 *)
%o (PARI) x='x+O('x^66); concat([0],Vec(2*x/(1-2*x-11*x^2+(1-x)*sqrt(1-2*x-11*x^2)))) \\ _Joerg Arndt_, May 11 2013
%K easy,nonn
%O 0,3
%A _Paul Barry_, Sep 12 2004