login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098518
E.g.f. exp(x)*BesselI(1,2*sqrt(2)*x)/sqrt(2).
3
0, 1, 2, 9, 28, 105, 366, 1337, 4824, 17649, 64570, 237545, 875700, 3238105, 11998182, 44550105, 165701168, 617297761, 2302877682, 8602038473, 32168532940, 120425227209, 451253210078, 1692411415161, 6352491269640, 23862066905425, 89696201471786, 337381127856297, 1269781909434724
OFFSET
0,3
COMMENTS
Binomial transform of e.g.f. BesselI(1,2*sqrt(2)*x)/sqrt(2), or {0,1,0,6,0,40,0,280,0,2016,0,....} with g.f. 2*x/(1-8*x^2+sqrt(1-8*x^2)). The binomial transform of e.g.f. BesselI(1,2*sqrt(r)*x)/sqrt(r) with g.f. 2*x/(1-(2*sqrt(r)*x)^2+sqrt(1-(2*sqrt(r)*x)^2)) has g.f. 2*x/(1-2*x-((2*sqrt(r))^2-1)*x^2+(1-x)*sqrt(1-2*x-((2*sqrt(r))^2-1)*x^2)).
LINKS
FORMULA
G.f.: 2*x/(1-2*x-7*x^2+(1-x)*sqrt(1-2*x-7*x^2)).
a(n) = sum{k=0..floor(n/2), binomial(n, k)*binomial(n-k, k+1)*2^k}.
D-finite with recurrence (n+1)*a(n) -3*n*a(n-1) -(5*n+3)*a(n-2) +7*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 14 2011
Shorter recurrence (for n>=3): (n-1)*(n+1)*a(n) = n*(2*n-1)*a(n-1) + 7*(n-1)*n*a(n-2). - Vaclav Kotesovec, Dec 28 2012
a(n) ~ sqrt(4+sqrt(2))*(1+2*sqrt(2))^n/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Dec 28 2012
MATHEMATICA
CoefficientList[Series[2*x/(1-2*x-7*x^2+(1-x)*Sqrt[1-2*x-7*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 28 2012 *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec(2*x/(1-2*x-7*x^2+(1-x)*sqrt(1-2*x-7*x^2)))) \\ Joerg Arndt, May 11 2013
CROSSREFS
Sequence in context: A248437 A002532 A360023 * A128239 A307400 A323682
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 12 2004
STATUS
approved