The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323682 G.f.: Sum_{n>=0} x^n * ((1+x)^n + sqrt(2)*i)^n / (1 + sqrt(2)*i*x*(1+x)^n)^(n+1), where i^2 = -1. 5
 1, 1, 2, 9, 28, 117, 547, 2671, 14258, 81335, 490525, 3124166, 20903467, 146330944, 1068670938, 8119799153, 64030850716, 522964211565, 4415538541339, 38476720288240, 345511658683542, 3192911107457165, 30327219314890373, 295738960383147498, 2957765009957920537, 30309760321885910842, 317966262017144158784 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Note that the generating function expands into a power series in x with only real integer coefficients. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 FORMULA G.f.: Sum_{n>=0} x^n * ((1+x)^n + sqrt(2)*i)^n / (1 + sqrt(2)*i*x*(1+x)^n)^(n+1). G.f.: Sum_{n>=0} x^n * ((1+x)^n - sqrt(2)*i)^n / (1 - sqrt(2)*i*x*(1+x)^n)^(n+1). EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 28*x^4 + 117*x^5 + 547*x^6 + 2671*x^7 + 14258*x^8 + 81335*x^9 + 490525*x^10 + 3124166*x^11 + 20903467*x^12 + ... Let r = sqrt(2)*i, so that r^2 = -2, then A(x) = 1/(1 + r*x) + x*((1+x) + r)/(1 + r*x*(1+x))^2 + x^2*((1+x)^2 + r)^2/(1 + r*x*(1+x)^2)^3 + x^3*((1+x)^3 + r)^3/(1 + r*x*(1+x)^3)^4 + x^4*((1+x)^4 + r)^4/(1 + r*x*(1+x)^4)^5 + x^5*((1+x)^5 + r)^5/(1 + r*x*(1+x)^5)^6 + ... also, A(x) = 1/(1 - r*x) + x*((1+x) - r)/(1 - r*x*(1+x))^2 + x^2*((1+x)^2 - r)^2/(1 - r*x*(1+x)^2)^3 + x^3*((1+x)^3 - r)^3/(1 - r*x*(1+x)^3)^4 + x^4*((1+x)^4 - r)^4/(1 - r*x*(1+x)^4)^5 + x^5*((1+x)^5 - r)^5/(1 - r*x*(1+x)^5)^6 + ... PROG (PARI) {a(n) = my(r = sqrt(2)*I, A = sum(m=0, n+1, x^m*((1+x +x*O(x^n))^m + r)^m/(1 + r*x*(1+x +x*O(x^n))^m)^(m+1) )); round(polcoeff(A, n))} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n) = my(r = sqrt(2)*I, A = sum(m=0, n+1, x^m*((1+x +x*O(x^n))^m - r)^m/(1 - r*x*(1+x +x*O(x^n))^m)^(m+1) )); round(polcoeff(A, n))} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A323681, A323683, A323684, A323685. Sequence in context: A098518 A128239 A307400 * A086511 A291632 A328281 Adjacent sequences: A323679 A323680 A323681 * A323683 A323684 A323685 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 12 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 19:07 EST 2022. Contains 358563 sequences. (Running on oeis4.)