login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323681
G.f.: Sum_{n>=0} x^n*((1+x)^n + i)^n / (1 + i*x*(1+x)^n)^(n+1), where i^2 = -1.
7
1, 1, 2, 7, 22, 87, 377, 1771, 9026, 49199, 284983, 1745336, 11246563, 75956728, 535909242, 3938660615, 30078439304, 238154159543, 1951238032473, 16514089454284, 144148618179948, 1295871420550063, 11982543274136961, 113830968212019730, 1109755421437926323, 11092205946446644962, 113562177701272805808, 1189885690276586123039, 12749384941695403919951, 139593699183914764551501, 1560760177586802637547293
OFFSET
0,3
COMMENTS
Note that the generating function expands to a power series in x consisting of only real coefficients.
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n*((1+x)^n + i)^n / (1 + i*x*(1+x)^n)^(n+1).
G.f.: Sum_{n>=0} x^n*((1+x)^n - i)^n / (1 - i*x*(1+x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 22*x^4 + 87*x^5 + 377*x^6 + 1771*x^7 + 9026*x^8 + 49199*x^9 + 284983*x^10 + 1745336*x^11 + 11246563*x^12 + ...
such that
A(x) = 1/(1 + i*x) + x*((1+x) + i)/(1 + i*x*(1+x))^2 + x^2*((1+x)^2 + i)^2/(1 + i*x*(1+x)^2)^3 + x^3*((1+x)^3 + i)^3/(1 + i*x*(1+x)^3)^4 + x^4*((1+x)^4 + i)^4/(1 + i*x*(1+x)^4)^5 + x^5*((1+x)^5 + i)^5/(1 + i*x*(1+x)^5)^6 + x^6*((1+x)^6 + i)^6/(1 + i*x*(1+x)^6)^7 + x^7*((1+x)^7 + i)^7/(1 + i*x*(1+x)^7)^8 + ...
also,
A(x) = 1/(1 - i*x) + x*((1+x) - i)/(1 - i*x*(1+x))^2 + x^2*((1+x)^2 - i)^2/(1 - i*x*(1+x)^2)^3 + x^3*((1+x)^3 - i)^3/(1 - i*x*(1+x)^3)^4 + x^4*((1+x)^4 - i)^4/(1 - i*x*(1+x)^4)^5 + x^5*((1+x)^5 - i)^5/(1 - i*x*(1+x)^5)^6 + x^6*((1+x)^6 - i)^6/(1 - i*x*(1+x)^6)^7 + x^7*((1+x)^7 - i)^7/(1 - i*x*(1+x)^7)^8 + ...
RELATED INFINITE SERIES.
At x = -1/2, the g.f. A(x=-1/2) diverges, but the related series converges:
S = Sum_{n>=0} (-1/2)^n * (1/2^n + i)^n / (1 - i/2^(n+1))^(n+1).
Equivalently,
S = Sum_{n>=0} (-1)^n * 2^(n+1) * (1 + 2^n*i)^n / (2^(n+1) - i)^(n+1) ;
written explicitly,
S = 2/(2-i) - 2^2*(1+2*i)/(2^2-i)^2 + 2^3*(1+2^2*i)^2/(2^3-i)^3
- 2^4*(1+2^3*i)^3/(2^4-i)^4 + 2^5*(1+2^4*i)^4/(2^5-i)^5
- 2^6*(1+2^5*i)^5/(2^6-i)^6 + 2^7*(1+2^6*i)^6/(2^7-i)^7 + ...
which equals the real number
S = 0.61999741931719746274134412657304059740143377356135821449819330...
PROG
(PARI) {a(n) = my(A = sum(m=0, n+1, x^m*((1+x +x*O(x^n) )^m + I)^m/(1 + I*x*(1+x +x*O(x^n) )^m )^(m+1) )); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, n+1, x^m*((1+x +x*O(x^n) )^m - I)^m/(1 - I*x*(1+x +x*O(x^n) )^m )^(m+1) )); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 11 2019
STATUS
approved