login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323680
G.f.: Sum_{n>=0} x^n * ((1+x)^n + 1)^n / (1 + x*(1+x)^n)^(n+1).
8
1, 1, 2, 3, 10, 27, 109, 427, 1958, 9467, 49459, 274712, 1614199, 9996580, 64940226, 441179351, 3125044744, 23021059143, 175976694409, 1393077001768, 11400165893604, 96286628620151, 838123560744653, 7508677200329118, 69152466448641019, 653972815019717914, 6344196087718370108, 63073829812214409363, 642093553544993640915, 6687618467901426663337, 71209887695115322487153, 774636418450000537370791
OFFSET
0,3
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (q^n + p)^n / (1 + p*q^n*r)^(n+k),
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * (q^n - p)^n / (1 - p*q^n*r)^(n+k),
for any fixed integer k; here, k = 1 and r = x, p = 1, q = (1+x). See other examples for k = 2 (A326006), k = 3 (A326007), k = 4 (A326008).
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n * ((1+x)^n + 1)^n / (1 + x*(1+x)^n)^(n+1).
G.f.: Sum_{n>=0} x^n * ((1+x)^n - 1)^n / (1 - x*(1+x)^n)^(n+1).
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * ( (1+x)^n - (1+x)^k )^(n-k).
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * ( (1+x)^n + (1+x)^k )^(n-k) * (-1)^k.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * Sum_{j=0..n-k} (-1)^j * binomial(n-k,j) * (1 + x)^((n-j)*(n-k)).
FORMULAS INVOLVING TERMS.
a(n) = Sum_{i=0..n} Sum_{j=0..n-i} Sum_{k=0..n-i-j} (-1)^k * binomial(n-i,j) * binomial(n-i-j,k) * binomial((n-i-j)*(n-i-k),i).
a(n) = Sum_{i=0..n} Sum_{j=0..n-i} Sum_{k=0..n-i-j} binomial((n-i-j)*(n-i-k),i) * (-1)^j * (n-i)! / ((n-i-j-k)!*j!*k!).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 10*x^4 + 27*x^5 + 109*x^6 + 427*x^7 + 1958*x^8 + 9467*x^9 + 49459*x^10 + 274712*x^11 + 1614199*x^12 + ...
such that
A(x) = 1/(1+x) + x*((1+x) + 1)/(1 + x*(1+x))^2 + x^2*((1+x)^2 + 1)^2/(1 + x*(1+x)^2)^3 + x^3*((1+x)^3 + 1)^3/(1 + x*(1+x)^3)^4 + x^4*((1+x)^4 + 1)^4/(1 + x*(1+x)^4)^5 + x^5*((1+x)^5 + 1)^5/(1 + x*(1+x)^5)^6 + x^6*((1+x)^6 + 1)^6/(1 + x*(1+x)^6)^7 + x^7*((1+x)^7 + 1)^7/(1 + x*(1+x)^7)^8 + ...
also,
A(x) = 1/(1-x) + x*((1+x) - 1)/(1 - x*(1+x))^2 + x^2*((1+x)^2 - 1)^2/(1 - x*(1+x)^2)^3 + x^3*((1+x)^3 - 1)^3/(1 - x*(1+x)^3)^4 + x^4*((1+x)^4 - 1)^4/(1 - x*(1+x)^4)^5 + x^5*((1+x)^5 - 1)^5/(1 - x*(1+x)^5)^6 + x^6*((1+x)^6 - 1)^6/(1 - x*(1+x)^6)^7 + x^7*((1+x)^7 - 1)^7/(1 - x*(1+x)^7)^8 + ...
RELATED INFINITE SERIES.
At x = -1/2, the g.f. as a power series in x diverges, but the related series converges:
S = Sum_{n>=0} (-1/2)^n*(1/2^n + 1)^n / (1 - 1/2^(n+1))^(n+1), and
S = Sum_{n>=0} (-1/2)^n*(1/2^n - 1)^n / (1 + 1/2^(n+1))^(n+1).
Equivalently,
S = Sum_{n>=0} (-2)^n * (2^n + 1)^n / (2^(n+1) - 1)^(n+1), and
S = Sum_{n>=0} 2^n * (2^n - 1)^n / (2^(n+1) + 1)^(n+1) ;
written explicitly,
S = 1/(2-1) - 2*(2+1)/(2^2-1)^2 + 2^2*(2^2+1)^2/(2^3-1)^3 - 2^3*(2^3+1)^3/(2^4-1)^4 + 2^4*(2^4+1)^4/(2^5-1)^5 - 2^5*(2^5+1)^5/(2^6-1)^6 + 2^6*(2^6+1)^6/(2^7-1)^7 + ...
also,
S = 1/(2+1) + 2*(2-1)/(2^2+1)^2 + 2^2*(2^2-1)^2/(2^3+1)^3 + 2^3*(2^3-1)^3/(2^4+1)^4 + 2^4*(2^4-1)^4/(2^5+1)^5 + 2^5*(2^5-1)^5/(2^6+1)^6 + 2^6*(2^6-1)^6/(2^7+1)^7 + ...
where
S = 0.54250659711853510199583159448775795614278675261848614946772936514239222...
PROG
(PARI) {a(n) = my(A = sum(m=0, n+1, x^m*((1+x +x*O(x^n) )^m - 1)^m/(1 - x*(1+x +x*O(x^n) )^m )^(m+1) )); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
(PARI) {a(n) = sum(i=0, n, sum(j=0, n-i, sum(k=0, n-i-j, (-1)^k * binomial(n-i, j) * binomial(n-i-j, k) * binomial((n-i-j)*(n-i-k), i) )))}
for(n=0, 35, print1(a(n), ", "))
(PARI) {a(n) = sum(i=0, n, sum(j=0, n-i, sum(k=0, n-i-j, (-1)^j * binomial((n-i-j)*(n-i-k), i) * (n-i)! / ((n-i-j-k)!*j!*k!) )))}
for(n=0, 35, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 11 2019
STATUS
approved